Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 01 |
Tytuł artykułu

Physiological and comparative proteomic analyses in response to nitrogen application in an Amaryllidaceae plant, Lycoris aurea

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Galanthamine is used as a strong reversible inhibitor of cholinesterase to increase acetylcholine sensitivity. Here, we sought to determine the effect of nitrogen (N) application on physiological and proteomic properties of Lycoris aurea (L. aurea) in order to explore the factors that influence galanthamine biosynthesis. A marked increase in plant growth was observed under absent nitrogen condition (0 mmol L-1 N), while a clear stunting of growth was seen under high nitrogen condition (3.57 mmol L-1 N). Levels of photosynthetic pigments also showed a preference for the absent nitrogen condition. The leaves and roots of absent nitrogen plants had significantly higher galanthamine content and lower contents of free amino acids and proline compared with those of control (0.75 mmol L-1 N). On the other hand, galanthamine content in L. aurea was significantly reduced with high nitrogen treatment. However, the contents of free amino acids and proline were increased with high nitrogen application, suggesting that these play important roles in the storage of nitrogen in L. aurea. Next, we carried out proteomic analysis of the leaves, bulbs and roots of L. aurea treated with nitrogen by two-dimensional gel electrophoresis. Using comparative proteomic strategies, we found 11 proteins that showed significant differences among the three groups. These proteins are involved in a variety of cellular processes including energy metabolism, scavenging oxygen free radicals, cytoskeleton stabilization, galanthamine biosynthesis and cellular homeostasis. Out of the 11 proteins, the level of phenylalanine ammonia-lyase was found to correlate with that of galanthamine biosynthesis.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
35
Numer
01
Opis fizyczny
p.271-282,fig.,ref.
Twórcy
autor
  • College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
  • Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, School of Life Sciences, Xiamen University, Xiamen 361005, People’s Republic of China
autor
  • Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Science, Hangzhou 310021, People’s Republic of China
autor
  • Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, School of Life Sciences, Xiamen University, Xiamen 361005, People’s Republic of China
autor
  • Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, School of Life Sciences, Xiamen University, Xiamen 361005, People’s Republic of China
Bibliografia
  • Ahsan N, Lee DG, Lee SH, Kang KY, Lee JJ, Kim PJ, Yoon HS, Kim JS, Lee BH (2007) Excess copper induced physiological and proteomic changes in germinating rice seeds. Chemosphere 67(6):1182–1193. doi:10.1016/j.chemosphere.2006.10.075
  • Arnon DI (1949) Copper enzymes in isolated chloroplasts, polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15
  • Arrigoni O, DeGara L, Paciolla C, Evidente A, dePinto MC, Liso R (1997) Lycorine: a powerful inhibitor of L-galactono-gammalactone dehydrogenase activity. J Plant Physiol 150(3):362–364
  • Bajaj S, Targolli J, Liu LF, Ho THD, Wu R (1999) Transgenic approaches to increase dehydration-stress tolerance in plants. Mol Breeding 5(6):493–503. doi:10.1023/A:1009660413133
  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207. doi:10.1007/BF00018060
  • Bektas M, Guncer B, Guven C, Nurten R, Bermek E (2004) Actin—an inhibitor of eukaryotic elongation factor activities. Biochem Bioph Res Co 317(4):1061–1066. doi:10.1016/j.bbrc.2004.03.153
  • Bi Y-R, Yung K-H, Wong Y-S (1998) Physiological effects of narciclasine from the mucilage of Narcissus tazetta L. bulbs. Plant Sci 135(1):103–108. doi:10.1016/S0168-9452(98)00069-7
  • Bjellqvist B, Ek K, Giorgio Righetti P, Gianazza E, Go¨rg A, Westermeier R, Postel W (1982) Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. J Biochem Bioph Meth 6(4):317–339. doi:10.1016/0165-022X(82)90013-6
  • Carpentier SC, Witters E, Laukens K, Deckers P, Swennen R, Panis B (2005) Preparation of protein extracts from recalcitrant plant tissues: an evaluation of different methods for two-dimensional gel electrophoresis analysis. Proteomics 5(10):2497–2507. doi: 10.1002/pmic.200401222
  • Chang E-H, Zhang S-F, Wang Z-Q, Wang X-M, Yang J-C (2008) Effect of nitrogen and phosphorus on the amino acids in root exudates and grains of rice during grain filling. Acta Agron Sin 34(4):612–618. doi:10.1016/s1875-2780(08)60024-3
  • Chen CT, Chen L-M, Lin CC, Kao CH (2001) Regulation of proline accumulation in detached rice leaves exposed to excess copper. Plant Sci 160(2):283–290. doi:10.1016/S0168-9452(00)00393-9
  • Custic M, Horvatic M, Butorac A (2002) Effects of nitrogen fertilization upon the content of essential amino acids in head chicory (Cichorium intybus L. var. foliosum). Sci Hortic-Amsterdam 92(3–4):205–215. doi:10.1016/s0304-4238(01)00303-x
  • Dalle-Donne I, Rossi R, Milzani A, Di Simplicio P, Colombo R (2001) The actin cytoskeleton response to oxidants: from small heat shock protein phosphorylation to changes in the redox state of actin itself. Free Radical Bio Med 31(12):1624–1632. doi: 10.1016/S0891-5849(01)00749-3
  • Damanik R, Maziah M, Ismail M,Ahmad S, ZainA(2010) Responses of the antioxidative enzymes in Malaysian rice (Oryza sativa L.) cultivars under submergence condition. Acta Physiol Plant 32(4):739–747. doi:10.1007/s11738-009-0456-3
  • Dumont E, Bahrman N, Goulas E, Valot B, Sellier H, Hilbert J-L, Vuylsteker C, Lejeune-He´naut I, Delbreil B (2011) A proteomic approach to decipher chilling response from cold acclimation in pea (Pisum sativum L.). Plant Sci 180(1):86–98. doi:10.1016/j.plantsci.2010.09.006
  • Eichhorn J, Takada T, Kita Y, Zenk MH (1998) Biosynthesis of the Amaryllidaceae alkaloid galanthamine. Phytochemistry 49(4):1037–1047. doi:10.1016/S0031-9422(97)01024-8
  • Gallardo K, Firnhaber C, Zuber H, Hericher D, Belghazi M, Henry C, Kuster H, Thompson R (2007) A combined proteome and transcriptome analysis of developing Medicago truncatula seeds. Mol Cell Proteomics 6(12):2165–2179. doi:10.1074/mcp.M700171-MCP200
  • Hanks GR (2002) Narcissus and Daffodil: The Genus Narcissus. CRC Press, USA
  • Harvey AL (1995) The pharmacology of galanthamine and its analogues. Pharmacol Ther 68(1):113–128. doi:10.1016/0163-7258(95)02002-0
  • Ikarashi T, Ohyama T, Baba A (1986) Accumulation and distribution pattern of large amount of potassium in hyacinth roots in relation to accompanying anions. Soil Sci Plant Nutr 32:315–320
  • Jiang Q, Chen H, Pan X, Pan Q, Shi Y, Li X, Zhang G, Wang Y, Xie S, Shen S (2008) Proteomic analysis of wheat (Triticum aestivum L.) hybrid necrosis. Plant Sci 175(3):394–401. doi:10.1016/j.plantsci.2008.05.017
  • Joergensen RG (1996) Quantification of the microbial biomass by determining ninhydrin-reactive N. Soil Biol Biochem 28(3):301–306. doi:10.1016/0038-0717(95)00141-7
  • Jones DL, Owen AG, Farrar JF (2002) Simple method to enable the high resolution determination of total free amino acids in soil solutions and soil extracts. Soil Biol Biochem 34(12):1893–1902. doi:10.1016/S0038-0717(02)00203-1
  • Kottapalli KR, Rakwal R, Shibato J, Burow G, Tissue D, Burke J, Puppala N, Burow M, Payton P (2009) Physiology and proteomics of the water-deficit stress response in three contrasting peanut genotypes. Plant, Cell Environ 32(4):380–407. doi: 10.1111/j.1365-3040.2009.01933.x
  • Lee K, Bae DW, Kim SH, Han HJ, Liu X, Park HC, Lim CO, Lee SY, Chung WS (2010) Comparative proteomic analysis of the shortterm responses of rice roots and leaves to cadmium. J Plant Physiol 167(3):161–168. doi:10.1016/j.jplph.2009.09.006
  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2DDCT method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262
  • Miura Y, Kano M, Abe K, Urano S, Suzuki S, Toda T (2005) Agedependent variations of cell response to oxidative stress:proteomic approach to protein expression and phosphorylation. Electrophoresis 26(14):2786–2796. doi:10.1002/elps.200500172
  • Monreal JA, Jime´nez ET, Remesal E, Morillo-Velarde R, Garcı´a-Maurin˜o S, Echevarrı´a C (2007) Proline content of sugar beet storage roots: response to water deficit and nitrogen fertilization at field conditions. Environ Exp Bot 60(2):257–267. doi:10.1016/j.envexpbot.2006.11.002
  • Niedziela CE Jr, Kim SH, Nelson PV, De Hertogh AA (2008) Effects of N-P-K deficiency and temperature regime on the growth and development of Lilium longiflorum ‘Nellie White’ during bulb production under phytotron conditions. Sci Hortic-Amsterdam 116(4):430–436. doi:10.1016/j.scienta.2008.02.015
  • Ohyama T, Ikarashi T, Obata A, Baba A (1988) Role of nitrogen accumulated in tulip roots during winter season. Soil Sci Plant Nutr 34(3):341–350
  • Pang Q, Chen S, Dai S, Chen Y, Wang Y, Yan X (2010) Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. J Proteome Res 9(5):2584–2599. doi: 10.1021/pr100034f
  • Plomion C, Lalanne C, Claverol S, Meddour H, Kohler A, Bogeat-Triboulot M-B, Barre A, Le Provost G, Dumazet H, Jacob D, Bastien C, Dreyer E, de Daruvar A, Guehl J-M, Schmitter J-M, Martin F, Bonneu M (2006) Mapping the proteome of poplar and application to the discovery of drought-stress responsive proteins. Proteomics 6(24):6509–6527. doi:10.1002/pmic.200600362
  • Ru Q, Xiao Q, Lin P, Pei Z, Zheng H (2009a) Short- and long-term effects of NaCl on physiological and biochemical characteristics in leaves of a true mangrove, Kandelia candel. Russ J Plant Physiol 56(3):363–369. doi:10.1134/s1021443709030091
  • Ru Q, Zhang L, Chen J, Pei Z, Zheng H (2009b) Microwave-assisted extraction and identification of polysaccharide from Lycoris aurea. Chem Nat Compd 45(4):474–477. doi:10.1007/s10600-009-9404-0
  • Ruamrungsri S, Ohyama T, Ikarashi T (1996a) Nutrients, free amino acids, and sugar contents in Narcissus roots affected by N, P, K deficiency during winter. Soil Sci Plant Nutr 42(4):765–771
  • Ruamrungsri S, Ohyama T, Konno T, Ikarashi T (1996b) Deficiency of N, P, K, Ca, Mg, or Fe mineral nutrients in Narcissus cv. ‘‘Garden Giant’’. Soil Sci Plant Nutr 42(4):809–820
  • Sa´nchez E, Lo´pez-Lefebre LR, Garcı´a PC, Rivero RM, Ruiz JM, Romero L (2001) Proline metabolism in response to highest nitrogen dosages in green bean plants (Phaseolus vulgaris L. cv.Strike). J Plant Physiol 158(5):593–598. doi:10.1078/0176-1617-00268
  • Sa´nchez E, Ruiz JM, Romero L (2002) Proline metabolism in response to nitrogen toxicity in fruit of French Bean plants (Phaseolus vulgaris L. cv Strike). Sci Hortic-Amsterdam 93 (3-4):225–233. doi:10.1016/s0304-4238(01)00342-9
  • Schmeda-Hirschmann G, Astudillo L, Bastida J, Viladomat F, Codina C (2000) DNA binding activity of Amaryllidaceae alkaloids. Bol Soc Chil Quim 45(3):515–518
  • Selle´s M, Bergon˜o´n S, Viladomat F, Bastida J, Codina C (1997) Effect of sucrose on growth and galanthamine production in shoot-clump cultures of Narcissus confusus in liquid-shake medium. Plant Cell Tissue Organ Cult 49(2):129–136. doi: 10.1023/a:1005889730437
  • Suhadolnik RJ, Fischer AG, Zulalian J (1963) Biogenesis of the Amaryllidaceae alkaloids. II. Studies with whole plants, floral primordia and cell free extracts. Biochem Bioph Res Co 11 (3):208–212. doi:10.1016/0006-291X(63)90335-8
  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9(5):244–252. doi:10.1016/j.tplants.2004.03.006
  • Xu C, Huang B (2010) Differential proteomic responses to water stress induced by PEG in two creeping bentgrass cultivars differing in stress tolerance. J Plant Physiol 167(17):1477–1485. doi:10.1016/j.jplph.2010.05.006
Uwagi
rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-91216c52-c051-4210-9360-a56149547650
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.