Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
The pied butterfly bat, Glauconycteris superba, is endemic to the tropical forest zone of Africa, where it was previously known from only five specimens. Here we report the capture of 10 individuals in two localities of the Democratic Republic of the Congo (Mbiye Island and Yoko forest reserve), and we present the first acoustic data of the species recorded using a conventional microphone and a home-made acoustic system for real time 3D localization. Our morphological comparisons show that females are larger and heavier than males, and that the two sexes exhibit the same fur coloration pattern. We found some individual variations concerning the width of the two lateral white stripes on the belly, and the number and extension of white shoulder-spots. The echolocation recordings show evidence for alternation between two call types (A and B), differing in frequency, bandwidth, and duration. The acoustic signals obtained before captures and after releases revealed important variations depending on the trajectories and environmental conditions. Acoustic characteristics, wing measurements, and the unique black and white fur pattern of G. superba suggest that it is a canopy species able to fly at high speeds. Our findings will be useful for future ecological studies to provide new data on the range, population size, trend and threats of G. superba in order to better assess its conservation status.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.477-488,fig.,ref.
Twórcy
autor
- Institut Langevin, UMR 7587 CNRS, Universite Paris Diderot (Paris 7), 1 rue Jussieu, 75238 PARIS Cedex 05, France
autor
- Asellia Ecologie, 60 chemin de la Nuirie, 04200 Sisteron, France
autor
- Faculté des Sciences, Universite de Kisangani, Republique Democratique du Congo
autor
- Centre d'Ecologie et de Sciences de la Conservation, UMR 7204 CNRS MNHN, Museum national d'Histoire naturelle, 43, rue Buffon, 75005 Paris, France
autor
- Centre d'Ecologie et de Sciences de la Conservation, UMR 7204 CNRS MNHN, Museum national d'Histoire naturelle, 43, rue Buffon, 75005 Paris, France
autor
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, 78315 Radolfzell, Germany
autor
- Institut de Systematique, Evolution, Biodiversite, UMR 7205 CNRS MNHN UPMC, Museum national d'Histoire naturelle, 55, rue Buffon, 75005 Paris, France
Bibliografia
- 1. Arlettaz, R., G. Jones, and P. A. Racey. 2001. Effect of ac oustic clutter on prey detection by bats. Nature, 414: 742–745. Google Scholar
- 2. Barlow, K. E., P. A. Briggs, K. A. Haysom, A. M. Hutson, N. L. Lechiara, P. A. Racey, A. L. Walsh, and S. D. Langton. 2015. Citizen science reveals trends in bat populations: The National Bat Monitoring Programme in Great Britain. Biol og ical Conservation, 182: 14–26. Google Scholar
- 3. Csorba, G., P. Bates, S. Molur, and C. Srinivasulu. 2008. Sco to manes ornatus. The IUCN Red List of Threatened Spe cies 2008: e.T20058A9139959. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T20058A9139959.en. Downloaded on 16 May 2016. Google Scholar
- 4. Cuthill, I. C., M. Stevens, J. Sheppard, T. Maddocks, C. A. Párraga, and T. S. Troscianko. 2005. Disruptive color ation and background pattern matching. Nature, 434: 72–74. Google Scholar
- 5. Denzinger, A., B. M. Siemers, A. Schaub, and H.-U. Schnitzler. 2001. Echolocation by the barbastelle bat, Barbastella barbastellus. Journal of Comparative Physiology, 187A: 521–528. Google Scholar
- 6. Dietz, B. C., and O. Von Helversen. 2004. Illustrated identification key to the bats of Europe. Electronic Publi cation. Ver sion 1.0. Tuebingen & Erlangen, Germany, 35 pp. Avail able at https://rhone-alpes.lpo.fr/images/chiroptere/telecharger/dietz_von_helversen_2004_1.pdf. Google Scholar
- 7. Fahr, J., 2013. Glauconycteris superba pied butterfly bat (Superb butterfly bat). Pp. 575–576, in Mammals of Africa. Volume IV ( M. Happold and D. C. D. Happold, eds.). Bloomsbury Publishing, London, 800 pp. Google Scholar
- 8. Fahr, J., D. Jacobs, F. P. D. Cotterill, and P. J. Taylor. 2008. Glauconycteris superba. IUCN Red List Threat. Species. URL http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T44799A10944256.en. Downloaded on 16 May 2016. Google Scholar
- 9. Farney, J., and E. D. Fleharty. 1969. Aspect ratio, loading, wing span, and membrane areas of bats. Journal of Mammalogy, 50: 362–367. Google Scholar
- 10. Gembu Tungaluna, G.-C., V. Van Cakenberghe, P. Musaba Akawa, B. Dudu Akaibe, E. Verheyen, F. De Vree, and J. Fahr. 2013. Rediscovery of Glauconycteris superba Hayman, 1939 (Chiroptera: Vespertilionidae) after 40 years at Mbiye Island, Democratic Republic of the Congo. Euro pean Journal of Taxonomy, 42: 1–18. Google Scholar
- 11. Goerlitz, H. R., H. M. Ter Hofstede, M. R. K. Zeale, G. Jones, and M. W. Holderied. 2010. An aerial-hawking bat uses stealth echolocation to counter moth hearing. Current Biology, 20: 1568–1572. Google Scholar
- 12. Habersetzer, J. 1981. Adaptive echolocation sounds in the bat Rhinopoma harwickei — a field-study. Journal of Comparative Physiology, 144A: 559–566. Google Scholar
- 13. Happold, M., and D. Happold (eds.). 2013. Mammals of Africa. Volume IV: Hedgehogs, shrews and bats. Bloomsbury Publishing, London, 800 pp. Google Scholar
- 14. Hayman, R. W. 1939. Two new mammals from the Belgian Congo. Annals and Magazine of Natural History, 11, 3: 219–224. Google Scholar
- 15. Hayman, R. W. 1947 [for 1946]. A new race of Glauconycteris superba from West Africa. Annals and Magazine of Natural History, 11, 13: 547–550. Google Scholar
- 16. Hughes, A. C., C. Satasook, P. J. J. Bates, P. Soisook, T. Sritong Chuay, G. Jones, and S. Bumrungsri. 2010. Echolocation call analysis and presence-only modelling as conservation monitoring tools for rhinolophoid bats in Thailand. Acta Chiropterologica, 12: 311–327. Google Scholar
- 17. IUCN. 2015. The IUCN Red List of Threatened Species. Version 2015.4. Available at www.iucnredlist.org. Downloaded on 16 May 2016. Google Scholar
- 18. Jacobs, D. S., G. N. Eick, M. C. Schoeman, and C. A. Matthee. 2006. Cryptic species in an insectivorous bat, Scotophilus dinganii. Journal of Mammalogy, 87: 161–70. Google Scholar
- 19. Jones, G., and M. W. Holderied. 2007. Bat echolocation calls: adaptation and convergent evolutioal Society of London, 274B: 905–912. Google Scholar
- 20. Jung, K., E. K. V. Kalko, and O. Von Helversen. 2007. Echolo cation calls in Central American emballonurid bats: signal design and call frequency alternation. Journal of Zoology (London), 272: 125–137. Google Scholar
- 21. Jung, K., J. Molinari, and E. K. V. Kalko. 2014. Driving factors for the evolution of species-specific echolocation call design in New World free-tailed bats (Molossidae). PLoS ONE, 9: e85279. Google Scholar
- 22. Kingston, T., G. Jones, Z. Akbar, and T. H. Kunz. 2003. Alternation of echolocation calls in 5 species of aerial-feeding insectivorous bats from Malaysia. Journal of Mammalogy, 84: 205–215. Google Scholar
- 23. Küper, W., J. H. Sommer, J. C. Lovett, and W. Barthlott. 2006. Deficiency in African plant distribution data — missing pieces of the puzzle. Botanical Journal of the Linnean So ciety, 150: 355–368. Google Scholar
- 24. Mnhn & Groupe Chiroptères De La Sfepm. 2014. Cahier technique pour l'identification des chiroptères en main et le relevé de données, Version Août 2014. MNHN, Paris, 126 pp. Google Scholar
- 25. Norberg, U. M., and J. M. V. Rayner. 1987. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philosophical transactions of the Royal So ciety of London, 316B: 335–427. Google Scholar
- 26. Pickle, J. 2008. Measuring length and area of objects in digital images using Analyzing Digital Images Software. Available at http://mvh.sr.unh.edu/software/software.html. Google Scholar
- 27. Prugh, L. R., and C. D. Golden. 2014. Does moonlight increase predation risk? Meta-analysis reveals divergent responses of nocturnal mammals to lunar cycles. Journal of Animal Ecology, 83: 504–514. Google Scholar
- 28. Pye, J. D. 1993. Is fidelity futile? The 'true' signal is illusory, especially with ultrasound. Bioacoustics, 4: 271–286. Google Scholar
- 29. Ratcliffe, J. M., L. Jakobsen, E. K. V. Kalko, and A. Surlykke. 2011. Frequency alternation and an offbeat rhythm indicate foraging behavior in the echolocating bat, Saccopteryx bilineata. Journal of Comparative Physiology, 197A: 413–423. Google Scholar
- 30. Reeder, D. M., K. M. Helgen, M. E. Vodzak, D. P. Lunde, and I. Ejotre. 2013. A new genus for a rare African ves pertilionid bat: insights from South Sudan. ZooKeys, 285: 89–115. Google Scholar
- 31. Saldaña-Vázquez, R. A., and M. A. Munguía-Rosas. 2013. Lunar phobia in bats and its ecological correlates: a metaanalysis. Mammalian Biology, 78: 216–219. Google Scholar
- 32. Schmieder, D. A., H. A. Benítez, I. M. Borissov, and C. Fruciano. 2015. Bat species comparisons based on external morphology: a test of traditional versus geometric morphometric approaches. PLoS ONE, 10: e0127043. Google Scholar
- 33. Schnitzler, H.-U., C. F. Moss, and A. Denzinger. 2003. From spatial orientation to food acquisition in echolocating bats. Trends in Ecology & Evolution, 18: 386–394. Google Scholar
- 34. Seibert, A.-M., J. C. Koblitz, A. Denzinger, and H.-U. Schnitz Ler. 2015. Bidirectional echolocation in the bat Barbastella barbastellus: different signals of low source level are emitted upward through the nose and downward through the mouth. PLoS ONE, 10: e0135590. Google Scholar
- 35. Speakman, J. R., and P. A. Racey. 1991. No cost of echolocation for bats in flight. Nature, 350: 421–423. Google Scholar
- 36. Taylor, P. J., S. M. Goodman, M. C. Schoeman, F. H. Ratrimomanarivo, and J. M. Lamb. 2012. Wing loading correlates negatively with genetic structuring of eight Afro- Malagasy bat species (Molossidae). Acta Chiropterologica, 14: 53–62. Google Scholar
- 37. Williams, T. C., L. C. Ireland, and J. M. Williams. 1973. High altitude flights of the free-tailed bats, Tadarida brasi liensis, observed with radar. Journal of Mammalogy, 54: 807–821. Google Scholar
- 38. Wong, J. G., and D. A. Waters. 2001. Synchronisation of signal emission with wingbeat during the approach phase in soprano pipistrelles (Pipistrellus pygmaeus). Journal of Ex peri mental Biology, 204: 575–583. Google Scholar
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-8e556aca-6661-4899-9adc-3a2ed3047806