Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 21 | 2 |
Tytuł artykułu

Ultrasonic stimulation of co-immobilized saccharomyces cerevisiae cells and β-galactosidase enzyme for enhanced ethanol production from whey ultrafiltration permeate

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Low energy ultrasound irradiation (20 kHz, 1.0 W‧L⁻¹) was applied to enhance bioethanol production from whey ultrafiltration permeate by co-immobilized Saccharomyces cerevisiae cells and β-galactosidese enzyme. Sugar utilization and ethanol formation were investigated as a function of hydraulic retention time (HRT) between 12 and 36 h. Maximum ethanol production under HRT of 36 h was 26.30 g‧L⁻¹ with ultrasound exposure, and 23.60 g‧L⁻¹ without. Maximum ethanol yield was 0.532 g‧g⁻¹ lactose in the fermentation process with ultrasound irradiation, and 0.511 g‧g⁻¹ without. For the continuously operating bioreactors, the maximum rates of sugar utilization were 98.9 and 92.4% for the yeast with and without ultrasound exposure, respectively. These results highlight the positive effect of low-intensity ultrasounds in bioethanol fermentation from whey permeates, raising new perspectives for its disposal.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
21
Numer
2
Opis fizyczny
p.387-393,fig.,ref.
Twórcy
  • Department of Environmental Protection Engineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-957 Olsztyn, Poland
Bibliografia
  • 1. De GLUTZ F. N. Fuel bioethanol production from whey permeate http://biblion.epfl.ch/EPFL/theses/2009/4372/EPFL_TH 4372.pdf 2009.
  • 2. OZMIHCI S., KARGI F. Ethanol production from cheese whey powder solution in a packed column bioreactor at different hydraulic residence times. Biochem. Eng. J. 42, 180, 2008.
  • 3. SILVEIRA W. B., PASSOS F. J. V., MANTOVANI H. C., PASSOS F. M. L. Ethanol production from cheese whey permeate by Kluyveromyces marxianus UFV-3: A flux analysis of oxido-reductive metabolism as a function of lactose concentration and oxygen levels. Enzyme Microb. Technol. 36, 930, 2005.
  • 4. KOURKOUTAS Y., DIMITROPOULOU S., KANELLAKI M., MARCHANT R., NIGAM P., BANAT I. M. Hightemperature alcoholic fermentation of whey using Kluyveromyces marxianus IMB3 yeast immobilized on delignified cellulosic material. Bioresour. Technol. 82, 177, 2002.
  • 5. TAHOUN M. K., EL-NEMR T. M., SHATA O. H. Ethanol from lactose in salted cheese whey by recombinant Saccharomyces cerevisiae. Z. Lebensm. Unters. Forsch. 208, 60, 1999.
  • 6. COTÉ A., BROWN W. A., CAMERON D., van WALSUM G. P. Hydrolysis of lactose in whey permeate for subsequent fermentation to ethanol. J. Dairy Sci. 87, 1608, 2004.
  • 7. GUIMARÃES P. M. R., FRANCOIS J., PARROU J. L., TEIXEIRA J. A., DOMINGUES L. Adaptive evolution of a lactose-consuming Saccharomyces cerevisiae recombinant. Appl. Environ. Microbiol. 74, 1748, 2008.
  • 8. GUIMARÃES P. M. R., TEIXEIRA J. A., DOMINGUES L. Fermentation of high concentrations of lactose to ethanol by engineered flocculent Saccharomyces cerevisiae. Biotechnol. Lett. 30, 1953, 2008.
  • 9. RUBIO-TEXEIRA M., CASTRILLO J. I., ADAM A. C., UGALDE U. O., POLAINA J. Highly efficient assimilation of lactose by a metabolically engineered strain of Saccharomyces cerevisiae. Yeast 14, 827, 1998.
  • 10. CHISTI Y. Sonobioreactors: using ultrasound for enhanced microbial productivity. Trends Biotechnol. 21, (2), 89, 2003.
  • 11. LIU Y., TAKATSUKI H., YOSHIKOSHI A., WANG B., SAKANISHI A. Effects of ultrasound on the growth and vacuolar H+-ATPase activity of aloe arborescens callus cells. Colloids Surf. B 32, 105, 2003.
  • 12. LIU H., YAN Y., WANG W., YU Y. Low intensity ultrasound stimulates biological activity of aerobic activated sludge. Front. Energy Power Eng. China 1, 67, 2007.
  • 13. SCHLÄFER O., SIEVERS M., KLOTZBÜCHER H., ONYECHE T. I. Improvement of biological activity by low energy ultrasound assisted bioreactors. Ultrason. 38, 711, 2000.
  • 14. SULAIMAN. A. Z., AJIT A., YUNUS R. M., CHISTI Y. Ultrasound-assisted fermentation enchances bioethanol productivity. Biochem. Eng. J. 54, 141, 2011.
  • 15. PN-EN. Standard Methods for the Examination of Water and Wastewater, PN-67/A-86430, PN-A-79528-3:2007.
  • 16. MARQUES L. L. M., BUZATO J. B., CELLIGOI M. A. P. C. Effect of raffinose and ultrasound pulses on invertase release by free and immobilized Saccharomyces cerevisiae in loofa (Luffa cylindrica) sponge. Braz. Arch. Biol. Technol. 49, 1516, 2006.
  • 17. PITT W.G., ROSS S.A. Ultrasound increases the rate of bacterial cell growth. Biotechnol. Prog. 19, 1038, 2003.
  • 18. XIE B., LIU H., YAN Y. Improvement of the activity of anaerobic sludge by low-intensity ultrasound. J. Environ. Manag. 90, 260, 2009.
  • 19. NIKOLIĆ S., MOJOVIĆ L., PEJIN D., RAKIN M., VUKAŠINOVIĆ M. Production of bioethanol from corn meal hydrolyzates by free and immobilized cells of Saccharomyces cerevisiae var. ellipsoideus. Biomass Bioenergy, 34, 1449, 2010.
  • 20. RAMAKRISHNAN S., HARTLEY B. S. Fermentation of lactose by yeast cells secreting recombinant fungal lactase. Appl. Environ. Microbiol. 59, 4230, 1993.
  • 21. COMPAGNO C., PORRO D., SMERALDI C., RANZI B. M. Fermentation of whey and starch by transformed Saccharomyces cerevisiae cells. Appl. Environ. Microbiol. 43, 822, 1995.
  • 22. OZMIHCI S., KARGI F. Kinetics of batch ethanol fermentation of cheese-whey powder (CWP) solution as a function of substrate and yeast concentrations. Bioresour. Technol. 98, 2978, 2007.
  • 23. LANCHUN S., BOCHU W., LIANCAI Z., JIE L., YANHONG Y., CHUANREN D. The influence of low-intensity ultrasonic on some physiological characteristics of Saccharomyces cerevisiae. Colloids Surf. B 30, 61, 2003.
  • 24. LIU Y., YOSHIKOSHI A., WANG B. C., SAKANISHI A. Influence of ultrasonic stimulation on the growth and proliferation of Oryza sativa Nipponbare callus cells. Colloids Surf. B 27, 287, 2003.
  • 25. XIE B., WANG L., LIU H. Using low intensity ultrasound to improve the efficiency of biological phosphorus removal. Ultrason. Sonochem. 15, 775, 2008.
  • 26. TSUKAMOTO I., CONSTANTINOIU E., FURUTA M., NISHIMURA R., MAEDA Y. Inactivation effect of sonication and chlorination on Saccharomyces cerevisiae. Calorimetric Analysis. Ultrason. Sonochem. 11, 167, 2004.
  • 27. GUERRERO S., TOGNON M., ALZAMORA S. M. Response of Saccharomyces cerevisiae to the combined action of ultrasound and low weight chitosan. Food Control 16, 131, 2005.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-8b8a8543-0354-41dd-886d-335bbcdf317b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.