Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 02 |
Tytuł artykułu

Identification of genes differentially expressed in husk tomato (Physalis philadelphica) in response to whitefly (Trialeurodes vaporariorum) infestation

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Plants respond to phloem-feeding whiteflies by extensive changes in gene expression. To identify differentially expressed genes in husk tomato plants (Physalis philadelphica) infested with Trialeurodes vaporariorum, young plants were challenged with adult whiteflies, and forward and reverse subtractive libraries were constructed from infested leaves at 5 and 15 days after infestation. Several genes were identified as up-regulated; these included a diversity of genes involved in plant defense responses, protein synthesis or degradation, and cell wall fortification or modification. Genes required for amino acid biosynthesis, lipid metabolism and synthesis, including cell surface components such as suberin, responses to stress, photosynthesis and other functions, were similarly induced. Down-regulated genes were also identified, most prominently kinases and aquaporin genes. Similarities in defense responses between tomato and P. philadelphica were noted regarding the expression of certain genes in response to nematode, aphid, or whitefly. A role for abscisic acid, brassinosteroids, and cytokinins in the regulated response to whitefly infestation in P. philadelphica was also implied by the expression pattern of phytohormone-associated genes, including genes coding for proteins containing F-box motifs. Differential expression of selected genes was validated by quantitative real-time PCR. The possible role played by some of these genes during whitefly infestation is discussed.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
37
Numer
02
Opis fizyczny
Article: 29 [19 p.], fig.,ref.
Twórcy
  • Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Carretera Guadalajara-Nogales Km 15.5, C.P. 45110 Zapopan, Jalisco, Mexico
  • Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Carretera Guadalajara-Nogales Km 15.5, C.P. 45110 Zapopan, Jalisco, Mexico
  • Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Carretera Guadalajara-Nogales Km 15.5, C.P. 45110 Zapopan, Jalisco, Mexico
  • Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Colonia Independencia, 15.5, C.P. 44350 Guadalajara, Jalisco, Mexico
  • Instituto Profesional de la Región Oriente, Universidad Autonoma del Estado de Morelos, Nicolas Bravo SN, Xalostoc, C.P. 62715, Villa de Ayala, Morelos, Mexico
  • Laboratorio Nacional de Genomica para la Biodiversidad (Langebio)/Unidad de Genomica Avanzada (UGA), Centro de Investigacion y de Estudios Avanzados del IPN, Km 9.6 del Libramiento Norte Carretera Irapuato-Leon, Apartado Postal 629, C.P. 36500 Irapuato, Guadalajara, Mexico
  • Unidad de Biotecnología e Ingeniería Genetica de Plantas, Centro de Investigacion y de Estudios Avanzados del IPN
  • Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Carretera Guadalajara-Nogales Km 15.5, C.P. 45110 Zapopan, Jalisco, Mexico
Bibliografia
  • Achuo EA, Prinsen E, Höfte M (2006) Influence of drought, salt stress and abscisic acid on the resistance of tomato to Botrytis cinerea and Oidium neolycopersici. Plant Pathol 55:178–186
  • Ahn IP, Kim S, Lee YH (2005) Vitamin B1 functions as an activator of plant disease resistance. Plant Physiol 138:1505–1515
  • Antony B, Palaniswami MS (2006) Bemisia tabaci induces pathogenesis-related proteins in cassava (Manihot esculenta Crantz). Indian J Biochem Biophys 43:182–185
  • Berlinger MJ (1986) Host plant resistance to Bemisia tabaci. Agric Ecosyst Environ 17:69–82
  • Bilgin DD, Zavala JA, Zhu J, Clough SJ, Ort DR, DeLucia EH (2010) Biotic stress globally down-regulates photosynthesis genes. Plant Cell Environ 33:1597–1613
  • Bock MA, Sanchez PJ, McKee LJ, Ortiz M (1995) Selected nutritional and quality analyses of tomatillo (Physalis ixocarpa). Plant Food Hum Nutr 48:127–133
  • Bolger ME (2014) De novo sequencing of the Physalis alkekengi genome. Plant and Animal Genome XXII Conference, P052. San Diego, CA, USA
  • Broin M, Cuiné S, Peltier G, Rey P (2000) Involvement of CDSP 32, a drought-induced thioredoxin, in the response to oxidative stress in potato plants. FEBS Lett 467:245–248
  • Byrne DN, Miller WB (1990) Carbohydrate and amino acid composition of phloem sap and honeydew produced by Bemisia tabaci. J Insect Physiol 36:433–439
  • Calyecac-Cortero HG, Cibrián-Tovar J, Soto-Hernández M, García-Velasco R (2007) Isolation and identification of Physalis philadelphica LAM. volatiles. Agrociencia 41:337–346
  • Chepyshko H, Lai CP, Huang LM, Liu JM, Shaw JF (2012) Multifunctionality and diversity of GDSL esterase/lipase gene family in rice (Oryza sativa L. japonica) genome: new insights from bioinformatics analysis. BMC Genom 13:309
  • Choi DS, Hong JK, Hwang BK (2013) Pepper osmotin-like protein 1 (CaOSM1) is an essential component for defense response, cell death, and oxidative burst in plants. Planta 238:1113–1124
  • Chou HH, Holmes MH (2001) DNA sequence quality trimming and vector removal. Bioinformatics 17:1093–1104
  • Coemans B, Takahashi Y, Berberich T, Ito A, Kanzaki H, Matsumura H, Saitoh H, Tsuda S, Kamoun S, Sági L, Swennen R, Terauchi R (2008) High-throughput in planta expression screening identifies an ADP-ribosylation factor (ARF1) involved in nonhost resistance and R gene-mediated resistance. Mol Plant Pathol 9:25–36
  • Da X, Yu K, Shen S, Zhang Y, Wu J, Yi H (2012) Identification of differentially expressed genes in a spontaneous altered leaf shape mutant of the navel orange [Citrus sinensis (L.) Osbeck]. Plant Physiol Biochem 56:97–103
  • De la Torre-Almaráz R, Salazar-Segura M, Valverde RA (2003) Etiology of husk tomato (Physalis ixocarpa B.) Yellow Mottle in México. Agrociencia 37:277–289
  • Dombrowski JE (2003) Salt stress activation of wound-related genes in tomato plants. Plant Physiol 132:2098–2107
  • Doubnerová V, Jirasková A, Janošková M, Muller K, Baťková P, Synková H, Čeřovská N, Ryšlavá H (2007) The activity and isoforms of NADP-malic enzyme in Nicotiana benthamiana plants under biotic stress. Gen Physiol Biophys 26:281–289
  • Dubey NK, Goel R, Ranjan A, Idris A, Singh SK, Bag SK, Chandrashekar K, Pandey KD, Singh PK, Sawant SV (2013) Comparative transcriptome analysis of Gossypium hirsutum L. in response to sap sucking insects: aphid and whitefly. BMC Genom 14:241
  • Earley K, Smith MR, Weber R, Gregory BD, Poethig RS (2010) An endogenous F-box protein regulates ARGONAUTE1 in Arabidopsis thaliana. Silence 1:15
  • Enciso-Rodríguez FE, González C, Rodríguez EA, López CE, Landsman D, Barrero LS, Mariño-Ramírez L (2013) Identification of immunity related genes to study the Physalis peruviana-Fusarium oxysporum pathosystem. PLoS One 8:e68500
  • Estrada-Hernández MG, Valenzuela-Soto JH, Ibarra-Laclette E, Délano-Frier JP (2009) Differential gene expression in whitefly Bemisia tabaci-infested tomato (Solanum lycopersicum) plants at progressing developmental stages of the insect’s life cycle. Physiol Plant 137:44–60
  • Fischer G, Almanza-Merchán PJ, Miranda D (2014) Importancia y cultivo de la uchuva (Physalis peruviana L.). Rev Bras Frutic 36:1–15
  • Fridborg I, Grainger J, Page A, Coleman M, Findlay K, Angell S (2003) TIP, a novel host factor linking callose degradation with the cell-to-cell movement of Potato virus X. Mol Plant-Microbe Interact 16:132–140
  • Garzón-Martínez GA, Zhu Z, Landsman D, Barrero LS, Mariño-Ramírez L (2012) The Physalis peruviana leaf transcriptome: assembly, annotation and gene model prediction. BMC Genom 13:151
  • Gorovits R, Akad F, Beery H, Vidavsky F, Mahadav A, Czosnek H (2007) Expression of stress-response proteins upon whiteflymediated inoculation of Tomato yellow leaf curl virus (TYLCV) in susceptible and resistant tomato plants. Mol Plant-Microbe Interact 20:1376–1383
  • Goyer A (2010) Thiamine in plants: aspects of its metabolism and functions. Phytochemistry 71:1615–1624
  • Hamada AM, Jonsson LMV (2013) Thiamine treatments alleviate aphid infestations in barley and pea. Phytochemistry 94:135–141
  • Heidel AJ, Baldwin IT (2004) Microarray analysis of salicylic acidand jasmonic acid-signalling in responses of Nicotiana attenuata to attack by insects from multiple feeding guilds. Plant Cell Environ 27:1362–1373
  • Hong JK, Choi HW, Hwang IS, Hwang BK (2007) Role of a novel pathogen-induced pepper C3-H-C4 type RING-finger protein gene, CaRFP1, in disease susceptibility and osmotic stress tolerance. Plant Mol Biol 63:571–588
  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Ann Rev Plant Biol 59:41–66
  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877
  • Hundertmark M, Hincha DK (2008) LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genom 9:118
  • Inbar M, Gerling D (2008) Plant-mediated interactions between whiteflies, herbivores, and natural enemies. Annu Rev Entomol 53:431–448
  • INEGI (2014) Balanza comercial de mercancías de México: anuario estadístico 2013: exportaciones dólares/Instituto Nacional de Estadística y Geografía. México Jones DR (2003) Plant viruses transmitted by whiteflies. Eur J Plant Pathol 109:195–219
  • Karban R, Baldwin IT (1997) Induced responses to herbivory. University of Chicago Press, Chicago
  • Kavitha PG, Thomas G (2008) Defence transcriptome profiling of Zingiber zerumbet (L.) Smith by mRNA differential display. J Biosci 33:81–90
  • Kempema LA, Cui X, Holzer FM, Walling LL (2007) Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant Physiol 143:849–865
  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Ann Rev Plant Biol 53:299–328
  • Khajuria C, Wang H, Liu X, Wheeler S, Reese JC, El Bouhssini M, Whitworth RJ, Chen MS (2013) Mobilization of lipids and fortification of cell wall and cuticle are important in host defense against Hessian fly. BMC Genom 14:423
  • Kim WY, Ali Z, Park HJ, Park SJ, Cha JY, Perez-Hormaeche J, Quintero FJ, Shin G, Kim MR, Qiang Z, Ning L, Park HC, Lee SY, Bressan RA, Pardo JM, Bohnert HJ, Yun DJ (2013) Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nat Commun 4:1352
  • Kirchhausen T (2000) Three ways to make a vesicle. Nat Rev Mol Cell Biol 1:187–198
  • Koornneef A, Pieterse CMJ (2008) Cross talk in defense signaling. Plant Physiol 146:839–844
  • Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol 49:199–222
  • Li P, Chen L, Zhou Y, Xia X, Shi K, Chen Z, Yu J (2013) Brassinosteroids-induced systemic stress tolerance was associated with increased transcripts of several defence-related genes in the phloem in Cucumis sativus. PLoS One 8:e66582
  • Liu H, Wang X, Zhang H, Yang Y, Ge X, Song F (2008) A rice serine carboxypeptidase-like gene OsBISCPL1 is involved in regulation of defense responses against biotic and oxidative stress. Gene 15:57–65
  • Liu Y, Wang L, Xing X, Sun L, Pan J, Kong X, Zhang M, Li D (2013) ZmLEA3, a multifunctional group 3 LEA Protein from maize (Zea mays L.), is involved in biotic and abiotic stresses. Plant Cell Physiol 54:944–959
  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCT method. Methods 25:402–408
  • Lü B, Sun W, Zhang S, Zhang C, Qian J, Wang X, Gao R, Dong H (2011) HrpNEa induced deterrent effect on phloem feeding of the green peach aphid Myzus persicae requires AtGSL5 and AtMYB44 genes in Arabidopsis thaliana. J Biosci 36:123–137
  • Lytle BL, Song J, de la Cruz NB, Peterson FC, Johnson KA, Bingman CA, Phillips GN Jr, Volkman BF (2009) Structures of two Arabidopsis thaliana major latex proteins represent novel helixgrip folds. Proteins 76:237–243
  • Lytovchenko A, Schauer N, Willmitzer L, Fernie AR (2005) Tuberspecific cytosolic expression of a bacterial phosphoglucomutase in potato (Solanum tuberosum L.) dramatically alters carbon partitioning. Plant Cell Physiol 46:588–597
  • Maldonado E, Pérez-Castorena AL, Garcés C, Martínez M (2011) Philadelphicalactones C and D and other cytotoxic compounds from Physalis philadelphica. Steroids 76:724–728
  • Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton KA, Dang JL, Dietrich RA (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet 26:303–410
  • Maloney VJ, Samuels AL, Mansfield SD (2012) The endo-1,4-bglucanase Korrigan exhibits functional conservation between gymnosperms and angiosperms and is required for proper cell wall formation in gymnosperms. New Phytol 193:1076–1087
  • Mayer RT, Inbar M, McKenzie CL, Shatters R, Borowicz V, Albrecht U, Powell CA, Doostdar H (2002) Multitrophic interactions of the silverleaf whitefly, host plants, competing herbivores, and phytopathogens. Arch Insect Biochem Physiol 51:151–169
  • Miflin BJ, Habash DZ (2002) The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J Exp Bot 53:979–987
  • Mondego JM, Duarte MP, Kiyota E, Martínez L, De Camargo SR, De Caroli FP, Alves BS, Guerreiro SM, Oliva ML, Guerreiro-Filho O, Menossi M (2011) Molecular characterization of a miraculinlike gene differentially expressed during coffee development and coffee leaf miner infestation. Planta 233:123–137
  • Morales FJ (2003) The whitefly Trialeurodes vaporariorum as a potential constraint to the development of sustainable cropping systems in the mesothermic valleys of the Bolivian highlands. Technical report, Tropical Whitefly IPM Project Moran PJ, Thompson GA (2001) Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiol 125:1074–1085
  • Moreno JM, Martín R, Castresana C (2005) Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress. Plant J 41:451–463
  • Muniz J, Kretzschmar AA, Rufato L, Pelizza TR, De Rossi Rufato A, de Macedo TA (2014) General aspects of Physalis cultivation. Cienc Rural 44:964–970
  • Mur LAJ, Kenton P, Atzorn R, Miersch O, Wasternack C (2006) The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol 140:249–262
  • Pageau K, Reisdorf-Cren M, Morot-Gaudry J-F, Masclaux-Daubresse C (2006) The two senescence-related markers, GS1 (cytosolic glutamine synthetase) and GDH (glutamate dehydrogenase), involved in nitrogen mobilization, are differentially regulated during pathogen attack and by stress hormones and reactive oxygen species in Nicotiana tabacum L. leaves. J Exp Bot 57:547–557
  • Petzold J, Brownie C, Gould F (2009) Effect of Heliothis subflexa herbivory on fruit abscission by Physalis species: the roles of mechanical damage and chemical factors. Econ Entomol 34:603–613
  • Puthoff DP, Holzer FM, Perring TM, Walling LL (2010) Tomato pathogenesis-related protein genes are expressed in response to Trialeurodes vaporariorum and Bemisia tabaci biotype B feeding. J Chem Ecol 36:1271–1285
  • Qubbaj T, Reineke A, Zebitz CPW (2005) Molecular interactions between rosy apple aphids, Dysaphis plantaginea, and resistant and susceptible cultivars of its primary host Malus domestica. Entomol Exp Appl 115:145–152
  • Ramos NE, Neto AF, Arsénio S, Mangerico E, Stigter L, Fortunato E, Fernandes JE, Lavadinho AMP, Louro D (2002) Situation of the whiteflies Bemisia tabaci and Trialeurodes vaporariorum in protected tomato crops in Algarve (Portugal). EPPO Bull 32:11–15. doi:10.1046/j.1365-2338.2002.d01-25.x
  • Reca IB, Brutus A, Avino RD, Villard C, Bellincampi D (2008) Molecular cloning, expression and characterization of a novel apoplastic invertase inhibitor from tomato (Solanum lycopersicum) and its use to purify a vacuolar invertase. Biochimie 90:1611–1623
  • Rojo E, Solano R, Sanchez-Serrano JJ (2003) Interactions between signaling compounds involved in plant defense. J Plant Growth Regul 22:82–98
  • Ryan CA (2000) The systemin signaling pathway: differential activation of plant defensive genes. Biochim Biophys Acta 1477:112–121
  • Sakia RM (1992) The Box-Cox transformation technique: a review. Statistician 41:169–178
  • Saltzmann KD, Giovanini MP, Zheng C, Williams CE (2008) Virulent Hessian fly larvae manipulate the free amino acid content of host wheat plants. J Chem Ecol 34:1401–1410
  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97:11655–11660
  • SIAP (2013) Servicio de Información Agroalimentaria y Pesquera. Cierre de la producción agrícola por cultivo. Secretaria de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación, México
  • Simbaqueba J, Sánchez P, Sanchez E, Núñez Zarantes VM, Chacon MI, Barrero LS, Mariño-Ramírez L (2011) Development and characterization of microsatellite markers for the Cape Gooseberry Physalis peruviana. PLoS One 6:e26719
  • Singh A, Singh IK, Verma PK (2008) Differential transcript accumulation in Cicer arietinum L. in response to a chewing insect Helicoverpa armigera and defence regulators correlate with reduced insect performance. J Exp Bot 59:2379–2392
  • Smith CM, Boyko EV (2007) The molecular bases of plant resistance and defense responses to aphid feeding: current status. Entomol Exp Appl 122:1–16
  • Thompson GA, Goggin FL (2006) Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. J Exp Bot 57:755–766
  • Vaghchhipawala ZE, Schlueter JA, Shoemaker RC, Mackenzie SA (2004) Soybean FGAM synthase promoters direct ectopic nematode feeding site activity. Genome 47:404–413
  • van der Hoorn RAL, Jones JDG (2004) The plant proteolytic machinery and its role in defence. Curr Opin Plant Biol 7:400–407
  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216
  • Walling LL (2008) Avoiding effective defenses: strategies employed by phloem-feeding insects. Plant Physiol 46:859–866
  • Wang L, Zhichao L, Chaoying H (2012) Transcriptome-wide mining of the differentially expressed transcripts for natural variation of floral organ size in Physalis philadelphica. J Exp Bot 63:6457–6465
  • Wang L, He L, Li J, Zhao J, Li Z, He C (2014) Regulatory change at Physalis Organ Size 1 correlates to natural variation in tomatillo reproductive organ size. Nat Commun 5:4271
  • War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7:1306–1320
  • Wei J, Hu X, Yang J, Yang W (2012) Identification of single-copy orthologous genes between Physalis and Solanum lycopersicum and analysis of genetic diversity in Physalis using molecular markers. PLoS One 7:e5016
  • Xu Y, Chang PFL, Liu D, Narashiman ML, Raghothama KG, Hasegawa PM, Bressan RA (1994) Plant defence genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell 6:1077–1085
  • Yamamoto RT (1964) Mass rearing of the tobacco hornworm II. Larval rearing and pupation. J Econ Entomol 62:1427–1431
  • Yang JW, Yi H-S, Kim H, Lee B, Lee S, Ghim S-Y, Ryu C-M (2011) Whitefly infestation of pepper plants elicits defence responses against bacterial pathogens in leaves and roots and changes the below-ground microflora. J Ecol 99:46–56
  • Zamora-Tavares P, Vargas-Ponce O, Sanchez-Martínez J, Cabrera-Toledo D (2014) Diversity and genetic structure of the husk tomato (Physalis philadelphica Lam.) in Western Mexico. Genet Resour Crop Evol. doi:10.1007/s10722-014-0163-9
  • Zarate SI, Kempema LA, Walling LL (2007) Silverleaf whitefly induces salicylic acid responses and represses effectual jasmonic responses in Arabidopsis. Plant Physiol 143:866–875
  • Zhang P, Broekgaarden C, Zheng S, Snoeren TAL, van Loon JJA, Gols R, Dicke M (2013) Jasmonate and ethylene signaling mediate whitefly-induced interference with indirect plant defense in Arabidopsis thaliana. New Phytol 197:1291–1299
  • Zhu-Salzman K, Jian-Long B, Tong-Xian L (2005) Molecular strategies of plant defense and insect counter-defense. Insect Sci 12:3–15
  • Zhu-Salzman K, Luthe DS, Felton GW (2008) Arthropod-inducible proteins: broad spectrum defenses against multiple herbivores. Plant Physiol 146:852–858
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-8ae9ab42-a0c1-42a9-ad70-c976dd3b863a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.