Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 41 | 09 |
Tytuł artykułu

High CO2 favors ionic homeostasis, photoprotection, and lower photorespiration in salt‑stressed cashew plants

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to evaluate the effects of elevated CO₂ concentration on acclimation mechanisms related to gas exchange, photochemical activity, photorespiration, and oxidative protection in cashew plants exposed to salinity. Thirty-day-old cashew plants were irrigated with nutrient solution without (control) or with supplemental NaCl (100 mM) for 2 weeks in the greenhouse. Afterward, control and salt-stressed plants were transferred to the growth chamber and supplied with atmospheric (380 µmol mol⁻¹) or high CO₂ (760 µmol mol⁻¹) concentrations for 15 days. The results show that elevated CO₂ alone reduced the CO₂ net assimilation rate (PN) without affecting stomatal conductance (gS) and transpiration rate (E), whereas salinity and NaCl + high CO₂ reduced the PN associated with a decrease in gS and E. The potential quantum yield of photosystem II (Fv/Fm) was not altered, but a slight reduction in electron transport rate and photochemical quenching (qP) in response to high CO₂ alone or combined with NaCl occurred. However, non-photochemical quenching increased due to the effects of high CO₂ and NaCl alone and by their combination. High CO₂ alleviated the toxic effects of Na⁺ favoring the K⁺ /Na⁺ ratio under salinity. High CO₂ coupled with salinity decreased glycolate oxidase activity and the contents of hydrogen peroxide (H₂O₂), NH₄⁺, and glyoxylate. Furthermore, we observed increase in membrane damage associated with increased thiobarbituric acid-reactive substances levels under high CO₂. High CO₂ also decreased ascorbate peroxidase activity, but did not affect superoxide dismutase activity. In general, our data suggest that high CO₂ could induce acclimation processes in plants independent of salinity, revealing a set of responses that are more associated with acclimation than with protective responses.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
41
Numer
09
Opis fizyczny
Article 158 [14p.], fig.,ref.
Twórcy
autor
  • Laboratorio de Metabolismo de Plantas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceara, CP 6020, Fortaleza, Ceara CEP 60451‑970, Brazil
  • Laboratorio de Metabolismo de Plantas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceara, CP 6020, Fortaleza, Ceara CEP 60451‑970, Brazil
autor
  • Universidade Estadual do Ceara, Faculdade de Educacao, Ciencias e Letras do Sertao Central, Quixada, Ceara CEP 63900‑000, Brazil
autor
  • Instituto de Biociencias, Universidade Estadual Paulista (UNESP), Campos do Litoral Paulista, CP 73601, Sao Vicente, Sao Paulo CEP 11380‑972, Brazil
autor
  • Laboratorio de Metabolismo de Plantas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceara, CP 6020, Fortaleza, Ceara CEP 60451‑970, Brazil
autor
  • Universidade Federal Rural da Amazonia, UFRA, Campus de Capanema, Capanema, Pará CEP 68700‑030, Brazil
  • Pos-Graduacao em Producao Vegetal, Unidade Academica de Serra Talhada, Universidade Federal Rural de Pernambuco, CP 063, Serra Talhada, Pernambuco CEP 56900‑000, Brazil
Bibliografia
  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomacal conductance to rising (CO₂): mechanisms and environmental interactions. Plant Cell Environ 30:258–270
  • Alonso A, Pérez P, Martínez-Carrasco R (2009) Growth in elevated CO₂ enhances temperature response of photosynthesis in wheat. Physiol Plant 135:109–120
  • Aranjuelo I, Irigoyen JJ, Nogués S, Sánchez-Díaz M (2009) Elevated CO₂ and water availability effect on gas exchange and nodule development in N₂ fixing alfalfa plants. Environ Exp Bot 65:18–26
  • Baker AL, Tolbert NE (1966) Glycolate oxidase (ferredoxin-containing form). Methods Enzymol 9:339–340
  • Ball MC, Cochrane M, Rawson HM (1997) Growth and water use of the mangroves Rhizophora apiculate and R. stylosa in response to salinity and humidity under ambient and elevated concentrations of atmospheric CO₂. Plant Cell Environ 20:1158–1166
  • Bowman WD, Strain BR (1987) Interaction between CO₂ enrichment and salinity stress in the C4non-halophyte Andropogon glomeratus (Walter) BSP. Plant Cell Environ 10:267–270
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
  • Britto DT, Ebrahimi-Ardebili S, Hamam AM, Coskun D, Kronzucker HJ (2010) ⁴²K analysis of sodium-induced potassium efflux in barley: mechanism and relevance to salt tolerance. New Phytol 186:373–384
  • Cheeseman JM (2006) Hydrogen peroxide concentrations in leaves under natural conditions. J Exp Bot 57:2435–2444
  • Darbah JNT, Sharkey TD, Calfapietra C, Karnosky DF (2010) Differential response of aspen and birch trees to heat stress under elevated carbon dioxide. Environ Pollut 158:1008–1014
  • Elliott WH (1953) Isolation of glutamine synthetase and glutamotransferase from green peas. J Biol Chem 201:661–672
  • Ferreira-Silva SL, Silva EN, Carvalho FEL, Lima CS, Alves FAL, Silveira JAG (2010) Physiological alterations modulated by rootstock and scion combination in cashew under salinity. Sci Hortic 127:39–45
  • Ferreira-Silva SL, Voigt EL, Silva EN, Maia JM, Fontenele AV, Silveira JAG (2011) High temperature positively modulates oxidative protection in salt-stressed cashew plants. Environ Exp Bot 74:162–170
  • Flexas J, Ortuño MF, Ribas-Carbo M, Diaz-Espejo A, Fórz-Sarasa D, Medrano H (2007) Mesophyll conductance to CO₂ in Arabidopsis thaliana. New Phytol 175:501–511
  • Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364
  • Foyer CH, Bloom AJ, Queval G, Noctor G (2009) Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. Annu Rev Plant Biol 60:455–484
  • Geissler N, Hussin S, El-Far MMM, Koyro H-W (2015) Elevated atmospheric CO₂ concentration leads to different salt resistance mechanisms in a C3 (Chenopodium quinoa) and a C4 (Atriplex nummularia) halophyte. Environ Exp Bot 118:67–77
  • Gianopolitics CN, Ries SK (1977) Superoxide dismutase occurrence in higher plants. Plant Physiol 59:309–314
  • Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5:1–10
  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198
  • Heber U (2002) Irrungen, Wirrungen? The Mehler reaction in relation to cyclic electron transport in C3 plants. Photosynth Res 73:223–231
  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Sta Circ 347:1–32
  • Klughammer C, Schreiber U (1994) An improved method, using saturating light pulses, for the determination of photosystem I quantum yield via P700+-absorbance changes at 830 nm. Planta 192(2):261–268
  • Leakey ADB, Bernacchi CJ, Ort DR, Long SP (2006) Long-term growth of soybean at elevated [CO₂] does not cause acclimation of stomatal conductance under fully open air conditions. Plant Cell Environ 29:1794–1800
  • Lees DH, Francis FJ (1972) Standardization of pigment analyses in cranberries. Hortic Sci 7:83–84
  • Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592
  • Lima Neto MC, Cerqueira JVA, Cunha JR, Ribeiro RV, Silveira JAG (2017) Cyclic electron flow, NPQ and photorespiration are crucial for the establishment of young plants of Ricinus communis and Jatropha curcas exposed to drought. Plant Biol 19:650–659
  • Lima CS, Ferreira-Silva SL, Carvalho FEL, Neto MCL, Aragão RM, Silva EM, Sousa RMJ, Silveira JAG (2018) Antioxidant protection and PSII regulation mitigate photo-oxidative stress induced by drought followed by high light in cashew plants. Environ Exp Bot 149:59–69
  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide. Plants FACE the future. Annu Rev Plant Biol 55:591–628
  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880
  • Niazi BH, Athar M, Salim M, Rozema J (2005) Growth and ionic relations of fodderbeet and seabeet under saline environments. Int J Environ Sci Technol 2:113–120
  • Pérez-López U, Robredo A, Lacuesta M, Munõz-Rueda A, Mena-Petite A (2010) Atmospheric CO₂ concentration influences the contributions of osmolyte accumulation and cell wall elasticity to salt tolerance in barley cultivars. J Plant Physiol 167:15–22
  • Pérez-López U, Robredo A, Lacuesta M, Munõz-Rueda A, Munõz-Rueda A (2012) Elevated CO₂ reduces stomatal and metabolic limitations on photosynthesis caused by salinity in Hordeum vulgare. Photosynth Res 111:269–283
  • Pérez-López U, Robredo A, Miranda-Apodacaa J, Lacuesta M, Munõz-Rueda A, Mena-Petite A (2013) Carbon dioxide enrichment moderates salinity-induced effects on nitrogen acquisition and assimilation and their impact on growth in barley plants. Environ Exp Bot 87:148–158
  • Pérez-López U, Miranda-Apodaca J, Mena-Petite A, Munoz-Rueda A (2014) Responses of nutrient dynamics in barley seedlings to the interaction of salinity and carbon dioxide enrichment. Environ Exp Bot 99:86–99
  • Ribeiro RV, Machado EC, Santos MG, Oliveira RF (2009) Photosynthesis and water relations of well-watered orange plants as affected by winter and summer conditions. Photosynthetica 47:215–222
  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:26. https://doi.org/10.1155/2012/217037
  • Silva EN, Ferreira-Silva SL, Viegas RA, Silveira JAG (2010) The role of organic and inorganic solutes in the osmotic adjustment of drought-stressed Jatropha curcas plants. Environ Exp Bot 69:279–285
  • Silva EN, Silveira JAG, Rodrigues CRF, Viegas RA (2015) Physiological adjustment to salt stress in Jatropha curcas is associated with accumulation of salt ions, transport and selectivity of K⁺, osmotic adjustment and K⁺/Na⁺ homeostasis. Plant Biol 17:1023–1029
  • Silveira JAG, Viegas RA, Rocha IMA, Oliveira TJA (2003) Proline accumulation and glutamine synthetase activity are increased by salt-induced proteolysis in cashew leaves. J Plant Physiol 160:115–123
  • Singh M, Kumar J, Singh S, Singh VP, Prasad SM (2015) Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Rev Environ Sci Biotechnol 14:407–426
  • Souza RP, Ribeiro RV, Machado EC, Oliveira RF, Silveira JAG (2005) Photosynthetic responses of young cashew plants to varying environmental conditions. Pesquisa Agropecuária Brasileira 40:735–744
  • Thomsen HC, Eriksson D, Møller IS, Schjoerring JK (2014) Cytosolic glutamine synthetase: a target for improvement of crop nitrogen use efficiency? Trends Plant Sci 19:656–663
  • Xu Z, Jiang Y, Zhou G (2015) Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO₂ with environmental stress in plants. Front Plant Sci 6:1–17
  • Xu Z, Jiang Y, Jia B, Zhou G (2016) Elevated-CO₂ response of stomata and its dependence on environmental factors. Front Plant Sci 7:657
  • Yi C, Yao K, Cai S, Li H, Zhou J, Xia X, Shi K, Yu J, Foyer CH, Zhiou Y (2015) High atmospheric carbon dioxide-dependent alleviation of salt stress is linked to RESPIRATORY BURST OXIDASE 1 (RBOH1)-dependent H₂O₂ production in tomato (Solanum lycopersicum). J Exp Bot 66:7391–7404
  • Yu J, Sun L, Fan N, Yang Z, Huang B (2015) Physiological factors involved in positive effects of elevated carbon dioxide concentration on Bermudagrass tolerance to salinity stress. Environ Exp Bot 115:20–27
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-8ab95f8f-9d9f-4cb2-8dbe-4cd9ad64deb6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.