Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2017 | 76 | 4 |
Tytuł artykułu

Histomorphometric study of the effect of methionine on small intestine parameters in rat: an applied histologic study

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background: Assessment of morphological changes has more often been used in the diagnosis and assessment of intestinal pathology and development. Since methionine is widely used in nutritional and sports supplements and also there is not enough information about the effect of this amino acid on the gastrointestinal histomorphometry, the aim of this study was to assess the effect of methionine on the small intestine histomorphometry. Materials and methods: Thirty male Wistar rats were randomly divided to three equal groups. Two treatment groups received 100 and 200 mg/kg L-methionine solution respectively via intraperitoneal injection while the control group received normal saline. On day 21, all rats were euthanised and segments from three parts of small intestine were taken to histomorphometrical study. Paraffin sections were stained with haematoxylin and eosin, alcian blue (AB) and periodic acid Schiff (PAS) methods separately. In order to analyse histomorphometric features of each segment, villus height, width, area, crypt depth, villus height to crypt depth ratio, goblet cell number, and muscle layer thickness were measured. Results and Conclusions: Obtained results revealed that methionine may change the histomorphometric parameters of small intestine. (Folia Morphol 2017; 76, 4: 620–629)
Słowa kluczowe
Wydawca
-
Czasopismo
Rocznik
Tom
76
Numer
4
Opis fizyczny
p.620-629,fig.,ref.
Twórcy
autor
  • Shahid Bahonar University of Kerman, Kerman, Iran
autor
  • Shahid Bahonar University of Kerman, Kerman, Iran
Bibliografia
  • 1. Al-Qudah MM. Histological effects of aging on male albino rats duodenum. World J Med Sci. 2014; 10: 174–178.
  • 2. Baurhoo B, Phillip L, Ruiz-Feria CA. Effects of purified lignin and mannan oligosaccharides on intestinal integrity and microbial populations in the ceca and litter of broiler chickens. Poult Sci. 2007; 86(6): 1070–1078, indexed in Pubmed: 17495075.
  • 3. Berker B, Kaya C, Aytac R, et al. Homocysteine concentrations in follicular fluid are associated with poor oocyte and embryo qualities in polycystic ovary syndrome patients undergoing assisted reproduction. Hum Reprod. 2009; 24(9): 2293–2302, doi: 10.1093/humrep/dep069, indexed in Pubmed: 19443458.
  • 4. Caruso M, Demonte A, Neves VA. Histomorphometric study of role of lactoferrin in atrophy of the intestinal mucosa of rats. Health. 2012; 04(12): 1362–1370, doi: 10.4236/health.2012.412198.
  • 5. Derakhshanfar A, Bidadkosh A, Hashempour Sadeghian M. L-methionine attenuates gentamicin nephrotoxicity in male Wistar rat: pathological and biochemical findings. IJVR. 2009; 10(4): 323–328.
  • 6. Dharmani P, Srivastava V, Kissoon-Singh V, et al. Role of intestinal mucins in innate host defense mechanisms against pathogens. J Innate Immun. 2009; 1(2): 123–135, doi: 10.1159/000163037, indexed in Pubmed: 20375571.
  • 7. Dunsford BR, Haensly WE, Knabe DA. Effects of diet on acidic and neutral goblet cell populations in the small intestine of early weaned pigs. Am J Vet Res. 1991; 52(10): 1743–1746, indexed in Pubmed: 1768000.
  • 8. Forstner JF, Oliver MG, Sylvester FA. Production, structure and biologic relevance of gastrointestinal mucins. In: Guerrant RL. Infections of the Gastrointestinal Tract. Raven Press, New York 1995: 71–88.
  • 9. Franco J, Murakami AE, Natali M, et al. Influence of delayed placement and dietary lysine levels on small intestine morphometrics and performance of broilers. Braz J Poult Sci. 2006; 8(4): 233–241, doi: 10.1590/s1516-635x2006000400006.
  • 10. Gulbinowicz M, Berdel B, Wójcik S, et al. Morphometric analysis of the small intestine in wild type mice C57BL/6L — a developmental study. Folia Morphol. 2004; 63(4): 423–430, indexed in Pubmed: 15712138.
  • 11. Habold C, Reichardt F, Foltzer-Jourdainne C, et al. Morphological changes of the rat intestinal lining in relation to body stores depletion during fasting and after refeeding. Pflugers Arch - Eur J Physiol. 2007; 455(2): 323–332, doi: 10.1007/s00424-007-0289-0, indexed in Pubmed: 17638014.
  • 12. Hasan M, Ferguson A. Measurements of intestinal villi non-specific and ulcer-associated duodenitis-correlation between area of microdissected villus and villus epithelial cell count. J Clin Pathol. 1981; 34(10): 1181–1186, indexed in Pubmed: 7309898.
  • 13. Higa OH, Parra ER, Ab’Saber AM, et al. Protective effects of ascorbic acid pretreatment in a rat model of intestinal ischemia-reperfusion injury: a histomorphometric study. Clinics (Sao Paulo). 2007; 62(3): 315–320, indexed in Pubmed: 17589673.
  • 14. Hou Y, Wang L, Ding B, et al. Dietary alpha-ketoglutarate supplementation ameliorates intestinal injury in lipopolysaccharide-challenged piglets. Amino Acids. 2010; 39(2): 555–564, doi: 10.1007/s00726-010-0473-y, indexed in Pubmed: 20127262.
  • 15. Hou Y, Wang L, Zhang W, et al. Protective effects of N-acetylcysteine on intestinal functions of piglets challenged with lipopolysaccharide. Amino Acids. 2012; 43(3): 1233–1242, doi: 10.1007/s00726-011-1191-9, indexed in Pubmed: 22180025.
  • 16. Hou Y, Wang L, Yi D, et al. N-acetylcysteine reduces inflammation in the small intestine by regulating redox, EGF and TLR4 signaling. Amino Acids. 2013; 45(3): 513–522, doi: 10.1007/s00726-012-1295-x, indexed in Pubmed: 22532030.
  • 17. Huang X, Zhu HM, Deng CZ, et al. Gastroesophageal reflux: the features in elderly patients. World J Gastroenterol. 1999; 5(5): 421–423, indexed in Pubmed: 11819480.
  • 18. Kararli TT. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos. 1995; 16(5): 351–380, indexed in Pubmed: 8527686.
  • 19. Kellow JE, Borody TJ, Phillips SF, et al. Human interdigestive motility: variations in patterns from esophagus to colon. Gastroenterology. 1986; 91(2): 386–395, indexed in Pubmed: 3721125.
  • 20. Kelly D, Smyth JA, McCracken KJ. Digestive development of the early-weaned pig. 1. Effect of continuous nutrient supply on the development of the digestive tract and on changes in digestive enzyme activity during the first week post-weaning. Br J Nutr. 1991; 65(2): 169–180, indexed in Pubmed: 1904270.
  • 21. Kitt SJ, Miller PS, Lewis AJ. Factors affecting small intestine development in weanling pigs. Nebraska Swine Report. 2001: 33–35.
  • 22. Laudadio V, Passantino L, Perillo A, et al. Productive performance and histological features of intestinal mucosa of broiler chickens fed different dietary protein levels. Poult Sci. 2012; 91(1): 265–270, doi: 10.3382/ps.2011-01675, indexed in Pubmed: 22184453.
  • 23. Lieber CS. S-adenosyl-L-methionine: its role in the treatment of liver disorders. Am J Clin Nutr. 2002; 76(5): 1183S–1187S, indexed in Pubmed: 12418503.
  • 24. Makhro AV, Mashkina AP, Solenaya OA, et al. Prenatal hyperhomocysteinemia as a model of oxidative stress of the brain. Bull Exp Biol Med. 2008; 146(1): 33–35, indexed in Pubmed: 19145343.
  • 25. McGrath KR, Nakamoto T. Orally administered methionine alters the growth of tooth germs in newborn rats. Ann Nutr Metab. 1985; 29(6): 374–380, indexed in Pubmed: 4062248.
  • 26. Montagne L, Piel C, Lallès JP. Effect of diet on mucin kinetics and composition: nutrition and health implications. Nutr Rev. 2004; 62(3): 105–114, indexed in Pubmed: 15098857.
  • 27. Montagne L, Pluske JR, Hampson DJ. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim Feed Sci Technol. 2003; 108(1-4): 95–117, doi: 10.1016/s0377-8401(03)00163-9.
  • 28. Nazem MN, Amanollahi R, Tavakoli H, et al. Effect of in ovo injected methionine on feather follicle formation and its growth in the chicken embryo. ASJ. 2015; 12: 83–88.
  • 29. Nazem M, Kheirandish R, Babaei H, et al. Effect of short-term administration of methionine on the ovary and uterus in a rat. Comp Clin Pathol. 2017; 26(4): 867–873, doi: 10.1007/s00580-017-2458-7.
  • 30. Nazem M, Teymouri M, Jahantigh M. The histomorphometric and histopathologic effect of methionine on the epidermis and dermis layers of skin in rat. Comp Clin Pathol. 2016; 25(4): 699–704, doi: 10.1007/s00580-016-2250-0.
  • 31. Olaibi OK, Ijomone OM, Adewole SO. Histological and Histomorphometric studies of ethanol-injured pylorus and duodenum of Wistar rats pre-treated with Moringa oliefera extract. Al Ameen J Med Sci. 2014; 7: 104–111.
  • 32. Olaibi OK, Ijomone OM, Ajibade AJ. Histomorphometric study of stomach and duodenum of aspirin treated Wistar rats. J Exp Clin Anat. 2014; 13(1): 12, doi: 10.4103/1596-2393.142923.
  • 33. Olubuyide IO, Williamson RC, Bristol JB, et al. Goblet cell hyperplasia is a feature of the adaptive response to jejunoileal bypass in rats. Gut. 1984; 25(1): 62–68, indexed in Pubmed: 6690374.
  • 34. Pearson JP, Brownlee IA. Structure and function of mucosal surfaces. In: Nataro JP, Cohen PS, Mobley HLT, Weiser JN, ed. Colonization of Mucosal Surfaces. ASM Press, Washington 2005: 3–16.
  • 35. Peng YS, Evenson JK. Alleviation of methionine toxicity in young male rats fed high levels of retinol. J Nutr. 1979; 109(2): 281–290, indexed in Pubmed: 430229.
  • 36. Sabet Sarvestani F, Rahmanifar F, Tamadon A. Histomorphometric changes of small intestine in pregnant rat. Vet Res Forum. 2015; 6(1): 69–73, indexed in Pubmed: 25992254.
  • 37. Sakino TE, Riho KA, Michiko A, et al. Screening of toxicity biomarkers for methionine excess in rats. J Nutr. 2006; 136(6 Suppl): 1716–1721, indexed in Pubmed: 16702345.
  • 38. Sema TK, Nevhayat TG, Nevgul DT, et al. Effects of maternal hyperhomocysteinemia induced by methionine intake on oxidative stress and apoptosis in pup rat brain. Int J Dev Neurosci. 2010; 28(4): 325–329, doi: 10.1016/j.ijdevneu.2010.02.006, indexed in Pubmed: 20188811.
  • 39. Sharma R, Schumacher U. Morphometric analysis of intestinal mucins under different dietary conditions and gut flora in rats. Dig Dis Sci. 1995; 40(12): 2532–2539, indexed in Pubmed: 8536508.
  • 40. Sharma R, Schumacher U, Ronaasen V, et al. Rat intestinal mucosal responses to a microbial flora and different diets. Gut. 1995; 36(2): 209–214, indexed in Pubmed: 7883219.
  • 41. Sharp P, Villano J. The Laboratory Rat. 2nd ed. CRC Press, California 2012.
  • 42. Smirnov A, Sklan D, Uni Z. Mucin dynamics in the chick small intestine are altered by starvation. J Nutr. 2004; 134(4): 736–742, indexed in Pubmed:15051819.
  • 43. Specian RD, Oliver MG. Functional biology of intestinal goblet cells. Am J Physiol. 1991; 260: C183–93.
  • 44. Swatson H, Gous R, Iji P, et al. Effect of dietary protein level, amino acid balance and feeding level on growth, gastrointestinal tract, and mucosal structure of the small intestine in broiler chickens. Anim Res. 2002; 51(6): 501–515, doi: 10.1051/animres:2002038.
  • 45. Tesseraud S, Métayer Coustard S, Collin A, et al. Role of sulfur amino acids in controlling nutrient metabolism and cell functions: implications for nutrition. Br J Nutr. 2009; 101(8): 1132–1139, doi: 10.1017/S0007114508159025, indexed in Pubmed: 19079841.
  • 46. Thomson A, Keelan M. The development of the small intestine. Can J Physiol Pharmacol. 1986; 64(1): 13–29, doi: 10.1139/y86-003.
  • 47. Thomson AB, Keelan M, Wild GE. Nutrients and intestinal adaptation. Clin Invest Med. 1996; 19(5): 331–345, indexed in Pubmed: 8889271.
  • 48. Tufarelli V, Desantis S, Zizza S, et al. Performance, gut morphology and carcass characteristics of fattening rabbits as affected by particle size of pelleted diets. Arch Anim Nutr. 2010; 64(5): 373–382, doi: 10.1080/1745039X.2010.496945, indexed in Pubmed: 21114233.
  • 49. Ursini F, Pipicelli G. Nutritional Supplementation for Osteoarthritis. Alter Compl Ther. 2009; 15(4): 173–177, doi: 10.1089/act.2009.15404.
  • 50. Vaezi GH, Teshfam M, Bahodaran SH, et al. Effects of different levels of lysine on small intestinal villous morphology in starter diet of broiler chickens. Glob Vet. 2011; 7: 523–526.
  • 51. Vahouny GV, Le T, Ifrim I, et al. Stimulation of intestinal cytokinetics and mucin turnover in rats fed wheat bran or cellulose. Am J Clin Nutr. 1985; 41(5): 895–900, indexed in Pubmed: 2986445.
  • 52. Van Nevel CJ, Decuypere JA, Dierick NA, et al. Incorporation of galactomannans in the diet of newly weaned piglets: effect on bacteriological and some morphological characteristics of the small intestine. Arch Anim Nutr. 2005; 59(2): 123–138, doi: 10.1080/17450390512331387936, indexed in Pubmed: 16080306.
  • 53. Viguera RM, Rojas-Castañeda J, Hernández R, et al. Histological characteristics of the intestinal mucosa of the rat during the first year of life. Lab Anim. 1999; 33(4): 393–400, doi: 10.1258/002367799780487814, indexed in Pubmed: 10778790.
  • 54. Wang JX, Peng KM. Developmental morphology of the small intestine of african ostrich chicks. Poult Sci. 2008; 87(12): 2629–2635, doi:10.3382/ps.2008-00163.
  • 55. Yao K, Yin Y, Li X, et al. Alpha-ketoglutarate inhibits glutamine degradation and enhances protein synthesis in intestinal porcine epithelial cells. Amino Acids. 2012; 42(6): 2491–2500, doi: 10.1007/s00726-011-1060-6, indexed in Pubmed: 21861169.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-8a961cbe-0d2a-401c-b21d-893cc59bff9a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.