Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 24 | 4 |
Tytuł artykułu

Effects of landuse change on CH4 soil-atmospheric exchange in alpine meadow on the Tibetan Plateau

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Degradation of shrub meadows and reclamation of alpine meadows may heavily affect the soil sink for atmospheric methane (CH₄), but this is poorly understood. Therefore, in situ measurements of atmospheric CH₄ consumption were conducted in four landuse types: natural alpine meadow (NM), Elymus nutans pasture (EP), herbaceous meadow in shrub (HS), and a P. fruticosa shrub meadow (PS) within two years. CH₄ fluxes were measured using static chambers and gas chromatography. All four types of land use showed atmospheric CH₄ sink throughout the two years, with mean soil CH₄ consumption rates at 24.6±10.9, 33.8±15.0, 39.8±10.3, and 28.1±12.1 µg CH₄·m⁻²·hr⁻¹ for NM, EP, PS, and HS, respectively. Soil CH₄ consumption increased by 40% by reclamation from NM to EP, while it decreased by 30% by degradation from PS to HS. Soil CH₄ consumption in four types of land use was significantly correlated with temperature at 5 cm depth (P<0.01) and the soil water-filled pore space (WFPS) (P<0.05). Temperature showed stronger effects on soil CH₄ consumption than WFPS, except in NM. UV radiation was positively correlated with soil CH₄ consumption with increasing temperature and decreasing soil moisture. These findings indicate that a decrease in the grazing pressure in shrub meadows and increase in the area of artificial pasture reclaimed from alpine meadows would enhance the CH₄ sink in alpine meadows on the Tibetan Plateau.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
24
Numer
4
Opis fizyczny
p.1593-1602,fig.,ref.
Twórcy
autor
  • Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
  • College of Resources and Environment, University of the Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100039, China
autor
  • Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
autor
  • College of Resources and Environment, University of the Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100039, China
  • Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, PO Box 9719, Beijing 100101, China
autor
  • Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, PO Box 9719, Beijing 100101, China
autor
  • Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
autor
  • Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
autor
  • Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
autor
  • Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
  • College of Resources and Environment, University of the Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100039, China
autor
  • Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
  • College of Resources and Environment, University of the Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100039, China
autor
  • Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
Bibliografia
  • 1. FORSTER P., RAMASWAMY V., ARTAXO P., BERNTSEN T., BETTS R. Changes in atmospheric constituents and in radiative forcing. In: Solomon S., Qin D., Manning M., Chen Z., Marquis M., et al. (Eds.) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, New York, 2007.
  • 2. ZHOU L., TANG J., WEN Y., LI J., YAN P. The impact of local winds and long-range transport on the continuous carbon dioxide record at Mount Waliguan, China. Tellus B. 55, 145, 2003.
  • 3. DUTAUR L., VERCHOT LV. A global inventory of the soil CH₄ sink. Global Biogeochem Cy. 21, 2007.
  • 4. HASHIMOTO S. A New Estimation of Global Soil Greenhouse Gas Fluxes Using a Simple Data-Oriented Model. PloS One. 7, e41962, 2012.
  • 5. OJIMA D., VALENTINE D., MOSIER A., PARTON W., SCHIMEL D. Effect of land use change on methane oxidation in temperate forest and grassland soils. Chemosphere. 26, 675, 1993.
  • 6. BALEZENTIENE L., BLEIZGYS R. Short-term inventory of GHG fluxes in semi-natural and anthropogenized grassland. Pol. J. Environ. Stud. 20, 255, 2011.
  • 7. SMITH K., DOBBIE K., BALL B., BAKKEN L., SITAULA B. Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink. Global Change Biol. 6, 791, 2000.
  • 8. WILLISON T., WEBSTER C., GOULDING K., POWLSON D. Methane oxidation in temperate soils: effects of land use and the chemical form of nitrogen fertilizer. Chemosphere. 30, 539, 1995.
  • 9. MOSIER A., SCHIMEL D., VALENTINE D., BRONSON K., PARTON W. Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands. Nature. 350, 330, 1991.
  • 10. MOSIER A., PARTON W., VALENTINE D., OJIMA D., SCHIMEL D. CH₄ and N₂O fluxes in the Colorado shortgrass steppe: 1. Impact of landscape and nitrogen addition. Global Biogeochem. Cy. 10, 387, 1996.
  • 11. WANG C-J., TANG S-M., WILKES A., JIANG Y-Y., HAN G-D. Effect of Stocking Rate on Soil-Atmosphere CH₄ Flux during Spring Freeze-Thaw Cycles in a Northern Desert Steppe, China. PloS One. 7, e36794, 2012.
  • 12. YANQING Z. A quantitative study on characteristics and succession pattern of alpine shrub lands under different grazing intensities. J. Plant Ecol. 14, 358, 1990.
  • 13. SMITH C.K., COYEA M.R., MUNSON A.D. Soil carbon, nitrogen, and phosphorus stocks and dynamics under disturbed black spruce forests. Ecol. Appl. 10, 775, 2000.
  • 14. VIGANO I., RÖCKMANN T., HOLZINGER R., VAN DIJK A., KEPPLER F. The stable isotope signature of methane emitted from plant material under UV irradiation. Atmos. Environ. 43, 5637, 2009.
  • 15. CUI X., GU S., ZHAO X., WU J., KATO T. Diurnal and seasonal variations of UV radiation on the northern edge of the Qinghai-Tibetan Plateau. Agr. Forest Meteorol. 148, 144, 2008.
  • 16. DECKERS J.A., NACHTERGAELE F.O., SPAARGAREN O.C. World reference base for soil resources: Introduction. Acco, 1998.
  • 17. CAO G., XU X., LONG R., WANG Q., WANG C. Methane emissions by alpine plant communities in the Qinghai–Tibet Plateau. Biol. Lett. 4, 681, 2008.
  • 18. KONDA R., OHTA S., ISHIZUKA S., ARAI S., ANSORI S. Spatial structures of N₂O, CO₂, and CH₄ fluxes from Acacia mangium plantation soils during a relatively dry season in Indonesia. Soil Biol. Biochem. 40, 3021, 2008.
  • 19. JIANG C., YU G., FANG H., CAO G., LI Y. Short-term effect of increasing nitrogen deposition on CO₂, CH₄ and N₂O fluxes in an alpine meadow on the Qinghai-Tibetan Plateau, China. Atmo Environ. 44, 2920. 2010.
  • 20. WANG Y., XUE M., ZHENG X., JI B., DU R. Effects of environmental factors on N₂O emission from and CH₄ uptake by the typical grasslands in the Inner Mongolia. Chemosphere. 58, 205, 2005.
  • 21. LIU C., HOLST J., BRÜGGEMANN N., BUTTERBACHBAHL K., YAO Z. Winter-grazing reduces methane uptake by soils of a typical semi-arid steppe in Inner Mongolia, China. Atmos. Environ. 41, 5948, 2007.
  • 22. HOLST J., LIU C., YAO Z., BRÜGGEMANN N., ZHENG X. Fluxes of nitrous oxide, methane and carbon dioxide during freezing–thawing cycles in an Inner Mongolian steppe. Plant Soil. 308, 105, 2008.
  • 23. GENXU W., JU Q., GUODONG C., YUANMIN L. Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication. Sci. Total Environ. 291, 207, 2002.
  • 24. ZHENG Y., YANG W., SUN X., WANG S., RUI Y. Methanotrophic community structure and activity under warming and grazing of alpine meadow on the Tibetan Plateau. Appl. Microbiol. Biot. 93, 2193, 2012.
  • 25. SULLIVAN B.W., SELMANTS P.C., HART S.C. Does dissolved organic carbon regulate biological methane oxidation in semiarid soils? Global Change Biol. 19, 2149, 2013.
  • 26. HOLST J., LIU C., YAO Z., BRÜGGEMANN N., ZHENG X. Fluxes of nitrous oxide, methane and carbon dioxide during freezing–thawing cycles in an Inner Mongolian steppe. Plant Soil. 308, 105, 2008.
  • 27. GALBALLY I.E., KIRSTINE W.V., MEYER C., WANG Y.P. Soil–atmosphere trace gas exchange in semiarid and arid zones. J. Environ. Qual. 37, 599, 2008.
  • 28. ZHANG Y., ZHAO X., HUANG D. The study on sustainable usingof perennial sowing grassland in theQinghai-Tibet Plateau pasture. Acta Prata. Sci. 12, 22, 2003 [In Chinese].
  • 29. GUO X., HAN D., DU Y., LIN L., ZHANG F., LI Y., LI J., LIU S., CAO G. Methane Flux of Dominant Species of alpine meadow on the Qinghai-Tibetan Plateau. J. MT. Sci. 30, 470, 2012 [In Chinese].
  • 30. SHENG H., CAO G., LI G., ZHOU J., JIAO W., LI J., ZHANG P. Effect of grazing disturbance on plant community of alpine meadow dominated by Potentilla froticosa shrub on Qilian Mountain. Ecol. Environ. Sci. 18, 235, 2009 [In Chinese].
  • 31. WU X., YAO Z., BRÜGGEMANN N., SHEN Z., WOLF B. Effects of soil moisture and temperature on CO₂ and CH₄ soil-atmosphere exchange of various land use/cover types in a semi-arid grassland in Inner Mongolia, China. Soil Biol. Biochem. 42, 773, 2010.
  • 32. LUO G., KIESE R., WOLF B., BUTTERBACH-BAHL K. Effects of soil temperature and moisture on methane uptake and nitrous oxide emissions across three different ecosystem types. Biogeosciences. 10, 3205, 2013.
  • 33. FANG C., MONCRIEFF J.B. A model for soil CO₂ production and transport 1: Model development. Agr. For. Meteorol. 95, 225, 1999.
  • 34. BUTTERBACH-BAHL K., PAPEN H. Four years continuous record of CH₄-exchange between the atmosphere and untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany. Plant Soil. 240, 77, 2002.
  • 35. DUNFIELD P., DUMONT R., MOORE T.R. Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH. Soil Biol. Biochem. 25, 321, 1993.
  • 36. CHENG J., LEE X., THENG B. K., FANG B., YANG F., WANG B., ZHANG L. Spatial Variability of CO₂, CH₄, and N₂O Fluxes during Midsummer in the Steppe of Northern China. Pol. J. Environ. Stud. 23, (2), 319, 2014.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-879799d8-a7a2-4253-876e-24050edca41b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.