Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 20 | 1 |
Tytuł artykułu

Disassembly of fragmented bat communities in Orange Walk District, Belize

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The assembly, or disassembly, of ecological communities is thought to be driven by competition, environmental filtering, and dispersal limitation. These processes leave patterns in the functional, phylogenetic, and taxonomic diversity of communities. Bat communities in the tropics tend to have many species that are niche specialists with varying dispersal propensities. We investigated the effects of fragmentation on bat communities in an isolated forest fragment and a nearby larger forest preserve in Belize. Over four field seasons (2014–2017), we captured over 1,480 individuals from 32 species using mist nets and harp traps. The community in the fragment was a nested subset of species (20) compared to the preserve (30), and species richness was relatively stable over time. Functional richness was higher in the preserve than in the fragment, and species in the preserve were more closely related phylogenetically than expected by chance. Closely related species and species with different diet guilds co-occurred at both sites more often than distant relatives and those with the same diet guild. Bat species with flexible roost use had higher abundance in the fragment than the preserve, while closely related roost-specialist species had higher abundance in the preserve. Local extirpation and decreased dispersal are the most likely mechanisms of community disassembly in this system, and variation in roosting habits results in nonrandom community composition. These results have significant implications for the effects of ongoing deforestation and habitat fragmentation in Belize and adjacent dry forest areas.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
20
Numer
1
Opis fizyczny
p.147-159,fig.,ref.
Twórcy
autor
  • Department of Evolutionary Anthropology, Duke University, Durham 27708, NC, USA
autor
  • Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, Central Park West and 79th Street, New York 10024, NY, USA
autor
  • School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
autor
  • Department of Biology, University of Western Ontario, London N6A 5B7, CA, Canada
autor
  • Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, Central Park West and 79th Street, New York 10024, NY, USA
Bibliografia
  • 1. Aguiar, L., E. Bernard, and R. B. MacHado. 2014. Habitat use and movements of Glossophaga soricina and Lonchophylla dekeyseri (Chiroptera: Phyllostomidae) in a Neotropical savannah. Zoologia (Curitiba), 31: 223–229. Google Scholar
  • 2. Arita, H. T., and M. B. Fenton. 1997. Flight and echlocation in the ecology and evolution of bats. Trends in Ecology & Evolution, 12: 53–58. Google Scholar
  • 3. Arnone, I. S., E. Trajano, A. Pulchério-Leite, and F. D. C. Passos. 2016. Long-distance movement by a great fruiteating bat, Artibeus lituratus (Olfers, 1818, in southeastern Brazil (Chiroptera, Phyllostomidae): evidence for migration in Neotropical bats? Biota Neotropica, 16: 1–6. Google Scholar
  • 4. Atmar, W., and B. D. Patterson. 1993. The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia, 96: 373–382. Google Scholar
  • 5. Bawa, K. S. 1990. Plant-pollinator interactions in tropical rain forests. Annual Review of Ecology and Systematics, 21: 399–422. Google Scholar
  • 6. Becker, D. J., M. M. Chumchal, H. G. Broders, J. M. Korstian, E. L. Clare, T. R. Rainwater, S. G. Platt, N. B. Simmons, and M. B. Fenton. 2017a. Mercury bioaccumulation in bats reflects dietary connectivity to aquatic food webs. Environmental Pollution, 233: 1076–1085. Google Scholar
  • 7. Becker, D. J., M. M. Chumchal, A. B. Bentz, S. G. Platt, G. Á. Czirják, T. R. Rainwater, S. Altizer, and D. G. Streicker. 2017b. Predictors and immunological correlates of sublethal mercury exposure in vampire bats. Royal Society Open Science, 4: 170073. Google Scholar
  • 8. Bernard, E., and M. B. Fenton. 2003. Bat mobility and roosts in a fragmented landscape in Central Amazonia, Brazil. Bio tropica, 35: 262–277. Google Scholar
  • 9. Bregman, T. P., C. H. Sekercioglu, and J. A. Tobias. 2014. Global patterns and predictors of bird species responses to forest fragmentation: implications for ecosystem function and conservation. Biological Conservation, 169: 372–383. Google Scholar
  • 10. Brosset, A., P. Charles-Dominique, A. Cockle, J.-F. Cosson, and D. Masson. 1996. Bat communities and deforestation in French Guiana. Canadian Journal of Zoology, 74: 1974–1982. Google Scholar
  • 11. Cadotte, M. W., R. Dinnage, and D. Tilman. 2012. Phylogenetic diversity promotes ecosystem stability. Ecology, 93 (Supplement): S223–S233. Google Scholar
  • 12. Cavender-Bares, J. K. H. Kozak, P. V. A. Fine, and S. W. Kembel. 2009. The merging of community ecology and phylogenetic biology. Ecology Letters, 12: 693–715. Google Scholar
  • 13. Cisneros, L. M., M. E. Fagan, and M. R. Willig. 2015. Effects of human-modified landscapes on taxonomic, functional and phylogenetic dimensions of bat biodiversity. Diversity and Distributions, 21: 523–533. Google Scholar
  • 14. Cleveland, C. J., M. Betke, P. Federico, J. D. Frank, T. G. Hallam, J. Horn, J. D. López, G. F. McCracken, R. A. Medellín, and A. Moreno-Valdez. 2006. Economic value of the pest control service provided by Brazilian free-tailed bats in south-central Texas. Frontiers in Ecology and the Environment, 4: 238–243. Google Scholar
  • 15. Colwell, R. K., A. Chao, N. J. Gotelli, S.-Y. Lin, C. X. Mao, R. L. Chazdon, and J. T. Longino. 2012. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. Journal of Plant Ecology, 5: 3–21. Google Scholar
  • 16. Cortés-Delgado, N., and V. J. Sosa. 2014. Do bats roost and forage in shade coffee plantations? A perspective from the frugivorous bat Sturnira hondurensis. Biotropica, 46: 624–632. Google Scholar
  • 17. Dayan, T., and D. Simberloff. 2005. Ecological and community-wide character displacement: the next generation. Ecology Letters, 8: 875–894. Google Scholar
  • 18. Delpietro, H., R. Russo, G. Carter, R. Lord, and G. Delpietro. 2017. Reproductive seasonality, sex ratio and philopatry in Argentina's common vampire bats. Royal Society Open Science, 4: 160959. Google Scholar
  • 19. Dumont, E. R., K. Samadevam, I. Grosse, O. M. Warsi, B. Baird, and L. M. Davalos. 2014. Selection for mechanical advantage underlies multiple cranial optima in new world leaf-nosed bats. Evolution, 68: 1436–1449. Google Scholar
  • 20. Fahrig, L. 2013. Rethinking patch size and isolation effects: the habitat amount hypothesis. Journal of Biogeography, 40: 1649–1663. Google Scholar
  • 21. Fenton, M. B., L. Acharya, D. Audet, M. Hickey, C. Merriman, M. Obrist, D. Syme, and B. Adkins. 1992. Phyllo sto mid bats (Chiroptera: Phyllostomidae) as indicators of habitat disruption in the Neotropics. Biotropica, 24: 440–446. Google Scholar
  • 22. Fenton, M., E. Bernard, S. Bouchard, L. Hollis, D. Johnston, C. Lausen, J. Ratcliffe, D. Riskin, J. Taylor, and J. Zigouris. 2001. The bat fauna of Lamanai, Belize: roosts and trophic roles. Journal of Tropical Ecology, 17: 511–524. Google Scholar
  • 23. Francis, C. M. 1989. A comparison of mist nets and two designs of harp traps for capturing bats. Journal of Mammalogy, 70: 865–870. Google Scholar
  • 24. Fujita, M. S., and M. D. Tuttle. 1991. Flying foxes (Chiroptera: Pteropodidae): threatened animals of key ecological and economic importance. Conservation Biology, 5: 455–463. Google Scholar
  • 25. García-Morales, R., C. E. Moreno, E. I. Badano, I. Zuria, J. Galindo-González, A. E. Rojas-Martínez, and E. S. Ávila-Gómez. 2016. Deforestation impacts on bat functional diversity in tropical landscapes. PLoS ONE, 11: e0166765. Google Scholar
  • 26. Goslee, S. C., and D. L. Urban. 2007. The ecodist package for dissimilarity-based analysis of ecological data. Journal of Statistical Software, 22: 1–19. Google Scholar
  • 27. Grossberg, R., A. Treves, and L. Naughton-Treves. 2003. The incidental ecotourist: measuring visitor impacts on endangered howler monkeys at a Belizean archaeological site. Environmental Conservation, 30: 40–51. Google Scholar
  • 28. Haddad, N. M., L. A. Brudvig, J. Clobert, K. F. Davies, A. Gonzalez, R. D. Holt, T. E. Lovejoy, J. O. Sexton, M. P. Austin, and C. D. Collins. 2015. Habitat fragmentation and its lasting impact on Earth's ecosystems. Science Advances, 1: e1500052. Google Scholar
  • 29. Haines, H. 2011. How the other-half lived: continuing discussions of the enigma that is Ka'Kabish, Belize. Research Reports in Belizean Archaeology, 8: 137–150. Google Scholar
  • 30. Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. Turu Banova, A. Tyukavina, D. Thau, S. Stehman, S. Goetz, and T. Loveland. 2013. High-resolution global maps of 21st-century forest cover change. Science, 342: 850–853. Google Scholar
  • 31. Hardin, G. 1960. The competitive exclusion principle. Science, 131: 1292–1297. Google Scholar
  • 32. Hodgkison, R., S. T. Balding, A. Zubaid, and T. H. Kunz. 2003. Fruit bats (Chiroptera: Pteropodidae) as seed dispersers and pollinators in a lowland Malaysian rain forest. Biotropica, 35: 491–502. Google Scholar
  • 33. Hubbell, S. 2001. The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, NJ, 392 pp. Google Scholar
  • 34. Jones, G., D. S. Jacobs, T. H. Kunz, M. R. Willig, and P. A. Racey. 2009. Carpe noctem: the importance of bats as bioindicators. Endangered Species Research, 8: 93–115. Google Scholar
  • 35. Jonsson, B. G. 2001. A null model for randomization tests of nestedness in species assemblages. Oecologia, 127: 309–313. Google Scholar
  • 36. Klingbeil, B. T., and M. R. Willig. 2009. Guild-specific responses of bats to landscape composition and configuration in fragmented Amazonian rainforest. Journal of Applied Ecology, 46: 203–213. Google Scholar
  • 37. Kraft, N. J., R. Valencia, and D. D. Ackerly. 2008. Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 322: 580–582. Google Scholar
  • 38. Kunz, T. H. 1982. Roosting ecology of bats. Pp. 1–56, in Ecology of bats ( T. H. Kunz, ed.). Plenum Publishing Corporation, New York, xiv + 425 pp. Google Scholar
  • 39. Laliberté, E., P. Legendre, and B. Shipley. 2014. Package ‘FD': measuring functional diversity (FD) from multiple traits, and other tools for functional ecology. Available at https://cran.r-project.org/web/packages/FD/FD.pdf. Google Scholar
  • 40. Laurance, W. F., T. E. Lovejoy, H. L. Vasconcelos, E. M. VasConcelos, R. K. Didham, P. C. Stouffer, C. Stouffer, R. O. Bierregaard, S. G. Laurance, and E. Sampaio. 2002. Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conservation Biology, 16: 605–618. Google Scholar
  • 41. Levin, S. A. 1970. Community equilibria and stability, and an extension of the competitive exclusion principle. American Naturalist, 104: 413–423. Google Scholar
  • 42. Loayza, A. P., and B. A. Loiselle. 2008. Preliminary information on the home range and movement patterns of Sturnira lilium (Phyllostomidae) in a naturally fragmented landscape in Bolivia. Biotropica, 40: 630–635. Google Scholar
  • 43. Maas, B., D. S. Karp, S. Bumrungsri, K. Darras, D. Gonthier, J. C. C. Huang, C. A. Lindell, J. J. Maine, L. Mestre, and N. L. Michel. 2015. Bird and bat predation services in tropical forests and agroforestry landscapes. Biological Reviews, 91: 1–21. Google Scholar
  • 44. MacArthur, R., and R. Levins. 1964. Competition, habitat selection, and character displacement in a patchy environment. Proceedings of the National Academy of Sciences of the USA, 51: 1207–1210. Google Scholar
  • 45. MacArthur, R. H., and E. O. Wilson. 1967. The theory of island biogeography. Princeton University, Press, Princeton, NJ, 203 pp. Google Scholar
  • 46. Maechler, M., P. Rousseeuw, A. Struyf, M. Hubert, K. Hornik, M. Studer, and P. Roudier. 2015. Package ‘cluster’: cluster analysis extended Rousseeuw et al. Available at https://cran.r-project.org/web/packages/cluster/cluster.pdf. Google Scholar
  • 47. Magurran, A. E. 2013. Measuring biological diversity. Blackwell Science Ltd., Malden, MA, 264 pp. Google Scholar
  • 48. Mayfield, M. M., and J. M. Levine. 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters, 13: 1085–1093. Google Scholar
  • 49. Meyer, C. F., L. Aguiar, L. F. Aguirre, J. Baumgarten, F. M. Clarke, J. F. Cosson, S. E. Villegas, J. Fahr, D. Faria, and N. Furey. 2011. Accounting for detectability improves estimates of species richness in tropical bat surveys. Journal of Applied Ecology, 48: 777–787. Google Scholar
  • 50. Newbold, T., L. N. Hudson, S. L. Hill, S. Contu, I. Lysenko, R. A. Senior, L. Börger, D. J. Bennett, A. Choimes, and B. Collen. 2015. Global effects of land use on local terrestrial biodiversity. Nature, 520: 45–50. Google Scholar
  • 51. Norberg, U. M., and J. M. Rayner. 1987. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Transactions of the Royal Society of London, 316B: 335–427. Google Scholar
  • 52. O'hara, R. 2005. Species richness estimators: how many species can dance on the head of a pin? Journal of Animal Ecology, 74: 375–386. Google Scholar
  • 53. Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. O'hara, G. L. Simpson, P. Solymos, M. Stevens, and H. Wagner. 2014. Vegan: community ecology package. R package version 2.2-0. Available at http://CRAN.Rproject.org/package=vegan Google Scholar
  • 54. Oliver, T. H., M. S. Heard, N. J. Isaac, D. B. Roy, D. Procter, F. Eigenbrod, R. Freckleton, A. Hector, C. D. L. Orme, and O. L. Petchey. 2015a. Biodiversity and resilience of ecosystem functions. Trends in Ecology & Evolution, 30: 673–684. Google Scholar
  • 55. Oliver, T. H., N. J. Isaac, T. A. August, B. A. Woodcock, D. B. Roy, and J. M. Bullock. 2015b. Declining resilience of ecosystem functions under biodiversity loss. Nature Communications, 6: 10122. Google Scholar
  • 56. Paradis, E., J. Claude, and K. Strimmer. 2004. APE: analysis of phylogenetics and evolution in R language. Bioinformatics, 20: 289–290. Google Scholar
  • 57. Patterson, B. D., and W. Atmar. 1986. Nested subsets and the structure of insular mammalian faunas and archipelagos. Biological Journal of the Linnean Society, 28: 65–82. Google Scholar
  • 58. Patterson, B. D., M. R. Willig, and R. D. Stevens. 2003. Trophic strategies, niche partitioning, and patterns of ecological organization. Pp. 536–579, in Bat ecology ( T. H. Kunz and B. Fenton, eds.). University of Chicago Press, Chicago, 745 pp. Google Scholar
  • 59. Pearse, W., M. W. Cadotte, J. Cavender Bares, A. R. Ives, C. J. Tucker, S. C. Walker, and M. R. Helmus. 2015. Pez: phylogenetics for the environmental sciences. Bio informatics, 31: 2888–2890. Google Scholar
  • 60. Pendergast, D. M. 1981. Lamanai, Belize: Summary of excavation results, 1974–1980. Journal of Field Archaeology, 8: 29–53. Google Scholar
  • 61. Peters, S. L., J. R. Malcolm, and B. L. Zimmerman. 2006. Effects of selective logging on bat communities in the southeastern Amazon. Conservation Biology, 20: 1410–1421. Google Scholar
  • 62. Pinheiro, J., D. Bates, S. Debroy, and D. Sarkar. 2011. nlme: linear and nonlinear mixed effects models. R package version 3.1-97. [ https://cran.r-project.org/web/packages/nlme/nlme.pdf]. Google Scholar
  • 63. R Core Team. 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at http://www.R-project.org/. Google Scholar
  • 64. Reid, F. 2009. A field guide to the mammals of Central America and Southeast Mexico. Oxford University Press, Oxford, Google Scholar
  • 65. Ripperger, S. P., E. K. Kalko, B. Rodríguez-Herrera, F. Mayer, and M. Tschapka. 2015. Frugivorous bats maintain functional habitat connectivity in agricultural landscapes but rely strongly on natural forest fragments. PLoS ONE, 10: e0120535. Google Scholar
  • 66. Rojas, D., A. Vale, V. Ferrero, and L. Navarro. 2011. When did plants become important to leaf-nosed bats? Diversification of feeding habits in the family Phyllostomidae. Molecular Ecology, 20: 2217–2228. Google Scholar
  • 67. Schluter, D., and J. D. McPhail. 1992. Ecological character Displacement and speciation in sticklebacks. American Naturalist, 140: 85–108. Google Scholar
  • 68. Shi, J. J., and D. L. Rabosky. 2015. Speciation dynamics during the global radiation of extant bats. Evolution, 69: 1528–1545. Google Scholar
  • 69. Sikes, R., W. L. Gannon, and The Animal Care Use Committee of the American Society of Mammalogists. 2016. Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. Journal of Mammalogy, 97: 663–688. Google Scholar
  • 70. Simmons, N. B. 2005. Order Chiroptera. Pp. 312–529, in Mammal species of the World: a taxonomic and geographic reference, 3rd edition ( D. E. Wilson and D. M. Reeder, eds.). Johns Hopkins University Press, 2142 pp. Google Scholar
  • 71. Stevens, R. D., M. M. Gavilanez, J. S. Tello, and D. A. Ray. 2012. Phylogenetic structure illuminates the mechanistic role of environmental heterogeneity in community organization. Journal of Animal Ecology, 81: 455–462. Google Scholar
  • 72. Trajano, E. 1996. Movements of cave bats in southeastern Brazil, with emphasis on the population ecology of the common vampire bat, Desmodus rotundus (Chiroptera). Biotropica, 28: 121–129. Google Scholar
  • 73. Trevelin, L. C., M. Silveira, M. Port-Carvalho, D. H. Homem, and A. P. Cruz-Neto. 2013. Use of space by frugivorous bats (Chiroptera: Phyllostomidae) in a restored Atlantic forest fragment in Brazil. Forest Ecology and Manage ment, 291: 136–143. Google Scholar
  • 74. Villéger, S., N. W. Mason, and D. Mouillot. 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89: 2290–2301. Google Scholar
  • 75. Voss, R. S., D. W. Fleck, R. E. Strauss, P. M. Velazco, and N. B. Simmons. 2016. Roosting ecology of Amazonian bats: evidence for guild structure in hyperdiverse mammalian communities. American Museum Novitates, 3870: 1–43. Google Scholar
  • 76. Webb, C. O. 2000. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. American Naturalist, 156: 145–155. Google Scholar
  • 77. Williams-Guillén, K., I. Perfecto, and J. Vandermeer. 2008. Bats limit insects in a neotropical agroforestry system. Science, 320: 70–70. Google Scholar
  • 78. Willig, M. R., S. J. Presley, C. P. Bloch, C. L. Hice, S. P. Yanoviak, M. M. Díaz, L. A. Chauca, V. Pacheco, and S. C. Weaver. 2007. Phyllostomid bats of lowland Amazonia: effects of habitat alteration on abundance. Biotropica, 39: 737–746. Google Scholar
  • 79. Wilson, D., C. Ascorra, S. Solari, and D. Wilson. 1996. Bats as indicators of habitat disturbance. Pp. 613–626, in Manu: the biodiversity of southeastern Peru ( D. E. Wilson and A. Sandoval, eds.). Smithsonian Books, Washington, D.C, 679 pp. Google Scholar
  • 80. Wyman, M. S., and T. V. Stein. 2010. Modeling social and land-use/land-cover change data to assess drivers of smallholder deforestation in Belize. Applied Geography, 30: 329–342. Google Scholar
  • 81. Yachi, S., and M. Loreau. 1999. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proceedings of the National Academy of Sciences of the USA, 96: 1463–1468. Google Scholar
  • 82. Zhang, J., Q. Ding, and J. Huang,. 2013. Package ‘spaa’: species association analysis. R package version 0.2.1. Available at https://cran.r-project.org/web/packages/spaa/spaa.pdf.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.agro-86758f71-8c8c-4852-aaa2-727077d93543
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.