Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2014 | 73 | 3 |
Tytuł artykułu

Minocycline but not valproic acid influence the density of NogoA-immunoreactive neurons in the hilus of the dentate gyrus of the rats subjected to intracerebral haematoma

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Intracerebral haemorrhage is a devastating neurological disease with high mortality rate and poor prognosis. The most prominent manifestation of the disease are the movement disorders, but many patients also suffer from cognitive impairment. Taking into account vulnerability of the neurons located within the hilus of the dentate gyrus (HDG) to many brain insults we decided to study the effect of experimentally induced intracerebral haematoma on density of neurons expressing NogoA protein in HDG. In addition, we studied how administration of valproic acid and minocycline, the two drugs generally believed to be neuroprotective agents, influences the density of these neurons. Our study revealed that 4 weeks after intracerebral haematoma induction, minocycline and valproic acid treatment increased the densities of NogoA-ir neurons in the hilus of contralateral dentate gyrus once the data were compared to ipsilateral hemispheres within the same group. The analysis of contralateral hemisphere data, however, revealed increased densities of NogoA-positive neurons in haematoma and valproic acid treated animals when compared to contralateral hemispheres of control animals. The administration of minocycline was, however, able to alleviate this increase. These changes may influence the haematoma-induced reorganisation of neuronal circuitries in the dentate gyrus. (Folia Morphol 2014; 73, 3: 279–285)
Słowa kluczowe
Wydawca
-
Czasopismo
Rocznik
Tom
73
Numer
3
Opis fizyczny
p.279-285,fig.,ref.
Twórcy
autor
  • Department of Anatomy and Neurobiology, Medial University of Gdansk, Gdansk, Poland
  • Department of Anatomy and Neurobiology, Medial University of Gdansk, Gdansk, Poland
autor
  • Department of Anatomy and Neurobiology, Medial University of Gdansk, Gdansk, Poland
autor
  • Department of Anatomy and Neurobiology, Medial University of Gdansk, Gdansk, Poland
Bibliografia
  • 1. Amaral DG (1978) A Golgi study of cell types in the hilar region of the hippocampus in the rat. J Comp Neurol, 182: 851–914.
  • 2. Amaral DG, Scharfman HE, Lavenex P (2007) The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog Brain Res, 163: 3–22.
  • 3. Bandtlow CE, Dlaska M, Pirker S, Czech T, Baumgartner C, Sperk G (2004) Increased expression of Nogo-A in hippocampal neurons of patients with temporal lobe epilepsy. Eur J Neurosci, 20: 195–206.
  • 4. Brand C, Alber B, Fladung AK, Knauer K, König R, Oechsner A, Schneider IL, Tumani H, Widder B, Wirtz CR, Woischneck D, Kapapa T (2014) Cognitive performance following spontaneous subarachnoid haemorrhage versus other forms of intracranial haemorrhage. Br J Neurosurg, 28: 68–80.
  • 5. Chen MS, Huber AB, van der Haar ME, Frank M, Schnell L, Spillmann AA, Christ F, Schwab ME (2000) Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature, 403: 434–439.
  • 6. Dash PK, Orsi SA, Zhang M, Grill RJ, Pati S, Zhao J, Moore AN (2010) Valproate administered after traumatic brain injury provides neuroprotection and improves cognitive function in rats. PLoS One, 5: e11383.
  • 7. Delekate A, Zagrebelsky M, Kramer S, Schwab ME, Korte M (2011) NogoA restricts synaptic plasticity in the adult hippocampus on a fast time scale. Proc Natl Acad Sci USA, 108: 2569–2574.
  • 8. Gianola S, Savio T, Schwab ME, Rossi F (2003) Cell-autonomous mechanisms and myelin-associated factors contribute to the development of Purkinje axon intracortical plexus in the rat cerebellum. J Neurosci, 23: 4613–4624.
  • 9. Gil V, Nicolas O, Mingorance A., Ureña JM, Tang BL, Hirata T, Sáez-Valero J, Ferrer I, Soriano E, del Río JA (2006) Nogo-A expression in the human hippocampus in normal aging and in Alzheimer disease. J Neuropathol Exp Neurol, 65: 433–444.
  • 10. GrandPre T, Nakamura F, Vartanian T, Strittmatter SM (2000) Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature, 403: 439–444.
  • 11. Hartman R, Lekic T, Rojas H, Tang J, Zhang J H (2009) Assessing functional outcomes following intracerebral hemorrhage in rats. Brain Res, 1280: 148–157.
  • 12. Hunt D, Coffin RS, Prinjha RK, Campbell G, Anderson PN (2003) Nogo-A expression in the intact and injured nervous system. Mol Cell Neurosci, 24: 1083–1102.
  • 13. Hwang L, Choi IY, Kim SE, Ko IG, Shin MS, Kim CJ, Kim SH, Jin JJ, Chung JY, Yi JW (2013) Dexmedetomidine ameliorates intracerebral hemorrhage-induced memory impairment by inhibiting apoptosis and enhancing brain-derived neurotrophic factor expression in the rat hippocampus. Int J Mol Med, 31: 1047–1056.
  • 14. Jinde S, Zsiros V, Nakazawa K (2013) Hilar mossy cell circuitry controlling dentate granule cell excitability. Front Neural Circuits, 7: 14.
  • 15. Karwacki Z, Kowiański P, Dziewiątkowski J, Domaradzka-Pytel B, Ludkiewcz B, Wójcik S, Narkiewicz O, Moryś J (2005a) The influence of sevoflurane on the reactivity of astrocytes in the course of the experimental intracerebral haemorrhage in rat. J Physiol Pharmacol, 56: 455–469.
  • 16. Karwacki Z, Kowiański P, Dziewiątkowski J, Domaradzka-Pytel B, Ludkiewcz B, Wójcik S, Narkiewicz O, Moryś J (2005b) Apoptosis in the course of experimetal intracerebral haemorrhage in the rat. Folia Morphol, 64: 248–252.
  • 17. Karwacki Z, Kowiański P, Dziewiątkowski J, Domaradzka-Pytel B, Ludkiewicz B, Wójcik S, Narkiewicz O, Moryś J (2006) Quantitative analysis of influence of sevoflurane on the reactivity of microglial cells in the course of the experimental model of intracerebral haemorrhage. Eur J Anaesthesiol, 23: 874–881.
  • 18. Katsuki H (2010) Exploring neuroprotective drug therapies for intracerebral hemorrhage. J Pharmacol Sci, 114: 366–378.
  • 19. Kharatishvili I, Nissinen JP, McIntosh TK, Pitkänen A (2006) A model of posttraumatic epilepsy induced by lateral fluid-percussion brain injury in rats. Neuroscience, 140: 685–697.
  • 20. Kilic E, ElAli A, Kilic U, Guo Z, Ugur M, Uslu U, Bassetti CL, Schwab ME, Hermann DM (2010) Role of Nogo-A in neuronal survival in the reperfused ischemic brain. J Cereb Blood Flow Metab, 30: 969–984.
  • 21. Kim HJ, Rowe M, Ren M, Hong JS, Chen PS, Chuang DM (2007a) Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of actionn. J Pharmacol Exp Ther, 321: 892–901.
  • 22. Kim HS, Suh YH (2009) Minocycline and neurodegenerative diseases. Behav Brain Res, 196: 168–179.
  • 23. Lauterbach EC, Victoroff J, Coburn KL, Shillcutt SD, Doonan SM, Mendez MF (2010) Psychopharmacological neuroprotection in neurodegenerative disease: assessing the preclinical data. J Neuropsychiatry Clin Neurosci, 22: 8–18.
  • 24. MacLellan CL, Langdon KD, Churchill KP, Granter-Button S, Corbett D (2009) Assessing cognitive function after intracerebral hemorrhage in rats. Behav Brain Res, 198: 321–328.
  • 25. Magloczky Z, Freund TF (1995) Delayed cell death in the contralateral hippocampus following kainate injection into the CA3 subfield. Neuroscience, 66: 847–860.
  • 26. Marklund N, Fulp CT, Shimizu S, Puri R, McMillan A, Strittmatter SM, McIntosh TK (2006) Selective temporal and regional alterations of Nogo-A and small proline-rich repeat protein 1A (SPRR1A) but not Nogo-66 receptor (NgR) occur following traumatic brain injury in the rat. Exp Neurol, 197: 70–83.
  • 27. McGee AW, Yang Y, Fischer QS, Daw NW, Strittmatter SM (2005) Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor. Science, 309: 2222–2226.
  • 28. Meier S, Bräuer AU, Heimrich B, Schwab ME, Nitsch R, Savaskan NE (2003a) Molecular analysis of Nogo expression in the hippocampus during development and following lesion and seizure. FASEB J, 17: 1153–1155.
  • 29. Mi YJ, Hou B, Liao QM, Ma Y, Luo Q, Dai YK, Ju G, Jin WL (2012) Amino-Nogo-A antagonizes reactive oxygen species generation and protects immature primary cortical neurons from oxidative toxicity. Cell Death Differ, 19: 1175–1186.
  • 30. Mingorance A, Fontana X, Solé M, Burgaya F, Ureña JM, Teng FY, Tang BL, Hunt D, Anderson PN, Bethea JR, Schwab ME, Soriano E, del Río JA (2004) Regulation of Nogo and Nogo receptor during the development of the entorhino-hippocampal pathway and after adult hippocampal lesions. Mol Cell Neurosci, 26: 34–49.
  • 31. Mingorance-Le Meur A, Zheng B, Soriano E, del Río JA (2007) Involvement of the myelin-associated inhibitor Nogo-A in early cortical development and neuronal maturation. Cereb Cortex, 17: 2375–2386.
  • 32. Paxinos G, Watson C (1986a) The rat brain in stereotaxic coordinates. 2nd Ed. Academic Press, New York.
  • 33. Peng X, Kim J, Zhou Z, Fink DJ, Mata M (2011) Neuronal Nogo-A regulates glutamate receptor subunit expression in hippocampal neurons. J Neurochem, 119: 1183–1193.
  • 34. Pernet V, Schwab ME (2012) The role of Nogo-A in axonal plasticity, regrowth and repair. Cell Tissue Res, 349: 97–104.
  • 35. Plane JM, Shen Y, Pleasure DE, Deng W (2010) Prospects for minocycline neuroprotection. Arch Neurol, 67: 1442–1448.
  • 36. Qian YR, Lee MJ, Hwang S, Kook JH, Kim JK, Bae CS (2010) Neuroprotection by valproic Acid in mouse models of permanent and transient focal cerebral ischemia. Korean J Physiol Pharmacol, 14: 435–440.
  • 37. Scharfman HE, Myers CE (2012) Hilar mossy cells of the dentate gyrus: a historical perspective. Front Neural Circuits, 6: 106.
  • 38. Sinn DI, Kim SJ, Chu K, Jung KH, Lee ST, Song EC, Kim JM, Park DK, Kun Lee S, Kim M, Roh JK (2007) Valproic acid-mediated neuroprotection in intracerebral hemorrhage via histone deacetylase inhibition and transcriptional activation. Neurobiol Dis, 26: 464–472.
  • 39. Spillmann AA, Bandtlow CE, Lottspeich F, Keller F, Schwab ME (1998) Identification and characterization of a bovine neurite growth inhibitor (bNI-220). J Biol Chem, 273: 19283–19293.
  • 40. Szymanska A, Biernaskie J, Laidley D, Granter-Button S, Corbett D (2006) Minocycline and intracerebral hemorrhage: influence of injury severity and delay to treatment. Exp Neurol, 197: 189–196.
  • 41. Takeda Y, Kamida T, Fujiki M, Kobayashi H (2007a) Hippocampal Nogo-A and neo-Timm’s staining in amygdala kindling rats. Neurol Res, 29: 199–203.
  • 42. Wasserman JK, Zhu X, Schlichter LC (2007) Evolution of the inflammatory response in the brain following intracerebral hemorrhage and effects of delayed minocycline treatment. Brain Res, 1180: 140–154.
  • 43. Xue M, Mikliaeva EI, Casha S, Zygun D, Demchuk A, Yong VW (2010a) Improving outcomes of neuroprotection by minocycline: guides from cell culture and intracerebral hemorrhage in mice. Am J Pathol, 176: 1193–1202.
  • 44. Zagrebelsky M, Schweigreiter R, Bandtlow CE, Schwab ME, Korte M (2010) Nogo-A stabilizes the architecture of hippocampal neurons. J Neurosci, 30: 13220–13234.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-859ae09c-674f-4c3c-bdd9-f0ba251272e5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.