Warianty tytułu
Języki publikacji
Abstrakty
This study set to delineate MHC class II immunogenic peptides encoded in proteins expressed by A33R, 14 kDa fusion protein and p42 genes of ectromelia virus (ECTV) Moscow strain (ECTV-Mos), a virus related to variola virus (Variola vera virus) responsible for smallpox in humans. A search for a safe and efficacious vaccine against poxviruses is still required mostly because of the emerging nature of certain viruses among poxviruses. In silico prediction of peptides from the 3 protein sequences revealed 6 potential candidates. Investigations included assessment of the peptide’s ability to bind to MHC class II molecules on antigen-presenting cells and to induce the proliferation, cytokine synthesis and cytotoxicity of CD4⁺ T cells originating from mice previously infected with ECTV-Mos. The results show that peptide ENHAETLRAAMISLA (Pep3) predicted from the protein sequence 14 kDa fusion protein induced significant proliferation, cytokine synthesis and cytotoxicity. Also Pep3 was able to bind strongly to MHC class II molecules on A20 cells. These results suggest that a small population of CD4⁺ T cells play a protective role dependent on cytotoxicity and possibly complement the CD8⁺ T cells population in this regard.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.488-491,fig.,ref.
Twórcy
autor
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8, 02-787 Warsaw, Poland
- Ross University School of veterinary Medicine, St.Kitts and Nevis, Basseterre, West Indies
Bibliografia
- Aslan N., Yurdaydin C., Wiegand J., Greten T., Ciner A., Meyer M. F., Heiken H., Kuhlmann B., Kaiser T., Bozkaya H., Tillmann H. L., Bozdayi A. M., Manns M. P., Wedemeyer H.: Cytotoxic CD4+ T cells in viral hepatitis. J. Viral Hepatitis 2006, 13, 505-514.
- Homma S., Komita H., Sagawa Y., Ohno T., Toda G.: Antitumour activity mediated by CD4+ cytotoxic T lymphocytes against MHC class II-negative mouse hepatocellular carcinoma induced by dendritic cell vaccine and interleukin-12. Immunology 2005, 115, 451-461.
- Hua L., Yao S., Pham D., Jiang L., Wright J., Sawant D., Dent A. L., Braciale T. J., Kaplan M. H., Sun J.: Cytokine-Dependent Induction of CD4+ T cells with Cytotoxic Potential during Influenza Virus Infection. J. Virol. 2013, 87, 11884-11893.
- Manzke N., Akhmetzyanova I., Hasenkrug K. J., Trilling M., Zelinskyy G., Dittmer U.: CD4+ T Cells Develop Antiretroviral Cytotoxic Activity in the Absence of Regulatory T Cells and CD8+ T Cells. J. Virol. 2013, 87, 6306-6313.
- Martorelli D., Muraro E., Merlo A., Turrini R., Rosato A., Dolcetti R.: Role of CD4+ Cytotoxic T Lymphocytes in the Control of Viral Diseases and Cancer. 2010 Int. Rev. Immunol. 29, 371-402.
- Munier C. M. L., van Bockel D., Bailey M., Ip S., Xu Y., Alcantara S., Liu S. M., Denyer G., Kaplan W., Suzuki K., Croft N., Purcell A., Tscharke D., Cooper D. A., Kent S. J., Zaunders J. J., Kelleher A. D.: The primary immune response to Vaccinia virus vaccination includes cells with a distinct cytotoxic effector CD4 T-cell phenotype. Vaccine 2016, 34, 5251-5261.
- Quezada S. A., Simpson T. R., Peggs K. S., Merghoub T., Vider J., Fan X., Blasberg R., Yagita H., Muranski P., Antony P. A., Restifo N. P., Allison J. P.: Tumor-reactive CD4+ T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J. Exp. Med. 2010, 207, 637-650.
- Sidney J., Southwood S., Oseroff C., Del Guercio M. F., Sette A., Grey H.: Measurement of MHC/peptide interactions by gel filtration, [in:] Current protocols in immunology. John Wiley & Sons, Inc., Hoboken, N.J. 1998, p. 18.13.11-18.13.19.
- Smith C., Martinez M., Cooper L., Rist M., Zhong J., Khanna R.: Generating functional CD8+ T cell memory response under transient CD4+ T cell deficiency: Implications for vaccination of immunocompromised individuals. Eur. J. Immunol. 2008, 38, 1857-1866.
- Soghoian D. Z., Streeck H.: Cytolytic CD4+ T cells in viral immunity. Expert Rev. Vaccines 2010, 9, 1453-1463.
- Tian Y., Sette A., Weiskopf D.: Cytotoxic CD4 T Cells: Differentiation, Function, and Application to Dengue Virus Infection. Frontiers Immunol. 2016, 7, 1-9.
- Toka F. N., De Faundez I. S., Gierynska M., Niemialtowski M. G.: The cytosolic free Ca2+ in ectromelia (mousepox) virus stimulated cytotoxic T lymphocytes. Viral Immunol. 1996, 9, 159-167.
- Toka F. N., Nfon C. K., Dawson H., Estes D. M., Golde W. T.: Activation of Porcine Natural Killer Cells and Lysis of Foot-and-Mouth Disease Virus Infected Cells. J. Interferon & Cytokine Res. 2009, 29, 179-192.
- Tscharke D. C., Woo W.-P., Sakala I. G., Sidney J., Sette A., Moss D. J., Bennink J. R., Karupiah G., Yewdell J. W.: Poxvirus CD8(+) T-Cell Determinants and Cross-Reactivity in BALB/c Mice. J. Virol. 2006, 80, 6318-6323.
- Veken van der L. T., Hoogeboom M., de Paus R. A., Willemze R., Falkenburg J. H. F., Heemskerk M. H. M.: HLA class II restricted T-cell receptor gene transfer generates CD4+ T cells with helper activity as well as cytotoxic capacity. Gene Ther. 2005, 12, 686-1695.
- Vora N. M., Li Y., Geleishvili M., Emerson G. L., Khmaladze E., Maghlakelidze G., Navdarashvili A., Zakhashvili K., Kokhreidze M., Endeladze M., Mokverashvili G., Satheshkumar P. S., Gallardo-Romero N., Goldsmith C. S., Metcalfe M. G., Damon I., Maes E. F., Reynolds M. G., Morgan J., Carroll D. S.: Human Infection with a Zoonotic Orthopoxvirus in the Country of Georgia. New England J. Med. 2015, 372, 1223-1230.
- WHO: Bugs, drugs & smoke. Stories from public health. http://whqlibdoc.who.int/publications/2012/9789241564366_eng.pdf, 2011, 3-21.
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.agro-85877e64-2b15-4e73-acde-fc58de879d86