Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 24 | 1 |
Tytuł artykułu

Organic matter and nitrogen distribution, and functional groups of filter at earthworm packing bed in vermifiltration

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper studies organic matter (OM) and nitrogen (N) distributions at different depths of an earthworm packing bed, and the N distribution in situ solution in artificial soil (AS). The contents of OM, nitrate nitrogen (NO₃-N), ammonia nitrogen (NH₃-N), and total nitrogen (TN) changed along with the depth of AS. The results of N concentration in situ solution indicated that 35 cm to 40 cm thickness of earthworm packing bed thickness was optimal for removing NH₃-N and TN for synthetic wastewater treatment. Fourier transform infrared spectra showed that most intensity variations of the absorbance peaks increased in AS, decreased in detritus, and slightly changed in sand after synthetic wastewater treatment. Furthermore, certain functional chemical attributes might evaluate the OM contents at the VF media, and AS could act as the main matrices for OM reaction.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
24
Numer
1
Opis fizyczny
p.375-380,fig.,ref.
Twórcy
autor
  • School of Geography Science, Nanjing Normal University, Nanjing 210023, P. R. China
autor
  • Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, P. R. China
autor
  • School of Geography Science, Nanjing Normal University, Nanjing 210023, P. R. China
autor
  • Sino - Japan Friendship Center for Environmental Protection, Ministry of Environmental Protection, Beijing 100029, P. R. China
autor
  • Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, P. R. China
Bibliografia
  • 1. SHAO Y. Y., PEI H. Y., HU W. R. Nitrogen removal by bioaugmentation in constructed wetlands for rural domestic wastewater in autumn. Desalin. Water. Treat. 51, 6624, 2013.
  • 2. WU Y. F., ZHU W. B., LU X. W. Identifying key parameters in a novel multistep bio-ecological wastewater treatment process for rural areas. Ecol. Eng. 61, 166, 2013.
  • 3. SOMBATSOMPOP K., SONGPIM A., REABROI S., INKONG-NGAM P. A comparative study of sequencing batch reactor and movingbed sequencing batch reactor for piggery wastewater treatment. Maejo. Int. J. Sci. Tech. 5, 191, 2011.
  • 4. KUMAR T., RAJPAL A., BHARGAVA R., PRASAD K. S. H. Performance evaluation of vermifilter at different hydraulic loading rate using river bed material. Ecol. Eng. 62, 77, 2014.
  • 5. LIU J., LU Z. B., ZHANG J., XING M. Y., YANG J. Phylogenetic characterization of microbial communities in a full-scale vermifilter treating rural domestic sewage. Ecol. Eng. 61, 100, 2013.
  • 6. MORAND P., ROBIN P., POURCHER A. M., OUDART D., FIEVET S., LUTH D., CLUZEAU D., PICOT B., LANDRAIN B. Design of an integrated piggery system with recycled water, biomass production and water purification by vermiculture, macrophyte ponds and constructed wetlands. Water. Sci. Technol. 63, 1314, 2011.
  • 7. FANG C. X., ZHENG Z., LUO X. Z., GUO F. H. Effect of hydraulic load on domestic wastewater treatment and removal mechanism of phosphorus in earthworm ecofilter. Fresen. Environ. Bull. 19, 1099, 2010.
  • 8. WANG L. M., ZHENG Z., LUO X. Z., ZHANG J. B. Performance and mechanisms of a microbial-earthworm ecofilter for removing organic matter and nitrogen from synthetic domestic wastewater. J. Hazard. Mater. 195, 245, 2011.
  • 9. SHAO L., XU Z. X., JIN W., YIN H. L., ZHU B. R. Nitrate removal from wastewater using rice strawas carbon source and biofilm carrier. Environ. Sci (China). 30, 1414, 2009.
  • 10. State Environmental Protection Administration. Water and wastewater monitoring and analysis methods. 4th.; Beijing, China, pp. 210-281, 2002.
  • 11. LIU G. S. Soil Physical and Chemical Analysis & Description of Soil Profiles, 1st ed.; Beijing, China, pp. 5-37, 1996.
  • 12. MEKONEN K., TESFAHUNEGNG B. Impact assessment of soil and water conservation measures at Medego watershed in Tigray, northern Ethiopia. Maejo. Int. J. Sci. Tech. 5, 312, 2011.
  • 13. BEMARDI A. C. C., MOTA E. P., CARDOSA R. D., MONTE M. B. M., OLIVEIRA P. P. A. Ammonia volatilization from soil, dry-matter yield, and nitrogen levels of Italian ryegrass. Commun. Soil. Sci. Plan. 45, 153, 2014.
  • 14. ZHAO Y. J., HUI Z., CHAO X., NIE E., LI J. H., HE J. ZHENG Z. Efficiency of two-stage combinations of subsurface vertical down-flow and up-flow constructed wetland systems for treating variation in influent C/N ratios of domestic wastewater. Ecol. Eng. 37, 1546, 2011.
  • 15. BHATNAGAR A., SILLANPÄÄ M. A review of emerging adsorbents for nitrate removal from water. Chem. Eng. J. 168, 493, 2011.
  • 16. AMOSSE J., BETTAREL Y., BOUVIER C., BOUVIER T., DUC T. T., THU T. D., JOUQUET P. The flows of nitrogen, bacteria and viruses from the soil to water compartments are influenced by earthworm activity and organic fertilization (compost vs. vermicompost) . Soil. Biol. Biochem. 66, 197, 2013.
  • 17. ROCHETTE P., ANGERS D. A., CHANTIGNY M. H., GASSER M. O., MACDONALD J. D., PELSTER D. E., BERTRAND N. NH₃ volatilization, soil NH₄⁺ concentration and soil pH following subsurface banding of urea at increasing rates. Can. J. Soil. Sci. 93, 261, 2013.
  • 18. KETROT D., SUDDHIPRAKAM A., KHEORUENROMNE I., SINGH B. Interactive effects of iron oxides and organic matter on chargeproperties of red soils in Thailand. Soil. Res. 51, 222, 2013.
  • 19. SIMKOVIC I., DLAPA P., DOERR S. H., MATAIX-SOLERA J., SASINKOVA V. Thermal destruction of soil water repellency and associated changes to soil organic matters as observed by FTIR spectroscopy. Catena. 74, 205, 2008.
  • 20. HAFIDI M., AMIR S., REVEL J. C. Structure characterization of olive mill waster-water after aerobic digestion using elemental analysis, FTIR and 13C NMR. Process. Biochem. 40, 2615, 2005.
  • 21. NAYAK P. S., SINGH B. K. Instrumental characterization of clay by XRF, XRD and FTIR. B. Mater. Sci. 30, 235, 2007.
  • 22. GRUDE M., LIN J. G., LEE P. H., KOKOREVICHA S. Evaluation of sewage sludge-based compost by FTIR spectroscopy. Geoderma. 130, 324, 2006.
  • 23. GALLÉ T., LAGEN B. V., KURTENBACH A., BIERL R. An FTIR-DRIFT study on river sediment particle structure: implications for biofilm dynamics and pollutant binding. Environ. Sci. Technol. 38, 4496, 2004.
  • 24. CHAPMAN S. J., CAMPHBELL C. D., FRASER A. R., PURI G. FTIR spectroscopy of peat in and bordering Scots pine woodland: relationship with chemical and biological properties. Soil. Biol. Biochem. 33, 1193, 2001.
  • 25. CLINTON P. W., NEWMAN R. H., ALLEN R. B. Immobilization of ¹⁵N in forest litter studied by 15N CPMAS NMR spectroscopy. Eur. J. Soil. Sci. 46, 551, 1995.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-845b0b14-114d-4dde-90f3-3bc812cb230e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.