Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 31 | 3 |
Tytuł artykułu

Leaf movement and photosynthetic plasticity of black lokust (Robinia pseudoacacia) alleviate stress under different light and water conditions

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Leaf morphological, physiological and biochemical characteristics of Robinia pseudoacacia L. seedlings were studied under different stress conditions. The plants were subjected to drought and shade stress for one month. Leaf inclination, chlorophyll fluorescence and chlorophyll content were measured at the first day (shortterm stress) and at the end of the stress period (long-term stress) and in the recovery period. Leaf inclination was affected mainly by light; a low level of irradiance caused leaves to be arranged horizontally. Diurnal rhythmicity was lost after the long-term stress, but resumed, in part, in the recovery period. Drought stress caused leaves to tilt more obviously and decreased damage to the photosystem. Sun avoiding movement in a single leaf and sun tracking movement in the whole plant coexisted. Significant physiological changes occurred under different conditions of light. Increased energy dissipation and light capture were the main responses to high and low level of irradiance, respectively, and these were reflected by changes of chlorophyll fluorescence and chlorophyll content. Phenotypic plasticity in the leaflet enhanced the protective response to stress. These adaptive mechanisms may explain better survival of R. pseudoacacia seedlings in the understory, especially during the drought periods, and made it to be the preponderant reforestation species in Shandong Province of China.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
31
Numer
3
Opis fizyczny
p.553-563,fig.,ref.
Twórcy
autor
  • Institute of Ecology and Biodiversity, College of Life Sciences. Shandong University, 250100 Jinan, People's Republic of China
autor
  • Institute of Ecology and Biodiversity, College of Life Sciences. Shandong University, 250100 Jinan, People's Republic of China
autor
  • Institute of Ecology and Biodiversity, College of Life Sciences. Shandong University, 250100 Jinan, People's Republic of China
autor
  • Institute of Ecology and Biodiversity, College of Life Sciences. Shandong University, 250100 Jinan, People's Republic of China
autor
  • Institute of Ecology and Biodiversity, College of Life Sciences. Shandong University, 250100 Jinan, People's Republic of China
autor
  • Institute of Ecology and Biodiversity, College of Life Sciences. Shandong University, 250100 Jinan, People's Republic of China
Bibliografia
  • Barker DH, Adams WWIII (1997) The xanthophyll cycle and energy dissipation in differently oriented faces of the cactus Opuntia macrorhiza. Oecologia 109:353–361. doi:10.1007/s004420050093
  • Cui XY, Niu HS, Wu J, Gu S, Wang YF, Wang SP, Zhao XQ, Tang YH (2006) Response of chlorophyll fluorescence to dynamic light in three alpine species differing in plant architecture. Environ Exp Bot 58:149–157. doi:10.1016/j.envexpbot.2005. 07.004
  • Fernández M, Gil L, Pardos JA (2000) Effects of water supply on gas exchange in Pinus pinaster Ait. Provenances during their first growing season. Ann Sci 57:9–16. doi:10.1051/forest:2000107
  • Galmés J, Medrano H, Flexas J (2007) Photosynthesis and photoinhibition in response to drought in a pubescent (var. minor) and a glabrous (var. palaui) variety of Digitalis minor. Environ Exp Bot 60:105–111. doi:10.1016/j.envexpbot.2006.08.001
  • Gamon JA, Pearcy RW (1989) Leaf movement, stress avoidance and photosynthesis in Vitis californica. Oecologia 79:475–481. doi: 10.1007/BF00378664
  • Genty B, Briantais JM, Baker NR (1989) The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92
  • Guo WH, Li B, Huang YM, Zhao HX, Zhang XS (2003) Effects of different water stresses on eco-physiological characteristics of Hippophae rhamnoides seedlings. Acta Bot Sin 45:1238–1244
  • Guo WH, Li B, Zhang XS, Wang RQ (2007) Architectural plasticity and growth responses of Hippophae rhamnoides and Caragana intermedia seedlings to simulated water stress. J Arid Environ 69:385–399. doi:10.1016/j.jaridenv.2006.10.003
  • Hong SS, Xu DQ (1999) Light-induced increase in initial chlorophyll fluorescence F0 level and the reversible inactivation of PS II reaction centers in soybean leaves. Photosynth Res 61:269–280. doi:10.1023/A:1006357203466
  • Ikeda T, Matsuda R (2002) Effects of soybean leaflet inclination on some factors related to photosynthesis. J Agric Sci 138:367–373. doi:10.1017/S0021859602002083
  • Ishida A, Toma T, Marjenah (1999) Leaf gas exchange and chlorophyll fluorescence in relation to leaf angle, azimuth, and canopy position in the tropical pioneer tree, Macaranga conifera. Tree Physiol 19:117–124
  • Jiang CD, Gao HY, Zou Q, Jiang GM, Li LH (2006) Leaf orientation, photorespiration and xanthophylls cycle protect young soybean leaves against high irradiance in field. Environ Exp Bot 55:87–96. doi:10.1016/j.envexpbot.2004.10.003
  • Johnson GH, Young AJ, Scholes JD, Horton P (1993) The dissipation of excess excitation energy in British plant species. Plant Cell Environ 16:673–679. doi:10.1111/j.1365-3040.1993.tb00485.x
  • Kato E, Nagano H, Yamamura S, Ueda M (2003) Synthetic inhibitor of leaf-closure that reveals the biological importance of leafmovement for the survival of leguminous plants. Tetrahedron 59:5909–5917. doi:10.1016/S0040-4020(03)00906-2
  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349
  • Leakey ADB, Press MC, Scholes JD (2003) Patterns of dynamic irradiance affect the photosynthetic capacity and growth of dipterocarp tree seedlings. Oecologia 135:184–193
  • Lemoine D, Peltier JP, Marigo G (2001) Comparative studies of the water relations and the hydraulic characteristics in Fraxinus excelsior, Acer pseudoplatanus and A. opalus trees under soil water contrasted conditions. Ann Sci 58:723–731. doi:10.1051/forest:2001159
  • Liao Y, Xu DQ (2007) Novel evidence for a reversible dissociation of light-harvesting complex II from photosystem II reaction center complex induced by saturating light illumination in soybean leaves. J Integr Plant Biol 49:523–530. doi:10.1111/j.1744-7909.2007.00435.x
  • Lichtenthaler HK, Wellburn AR (1983) Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592
  • Lin MJ, Hsu BD (2004) Photosynthetic plasticity of Phalaenopsis in response to different light environments. J Plant Physiol 161:1259–1268. doi:10.1016/j.jplph.2004.05.009
  • Liu CC, Welham CVJ, Zhang XQ, Wang RQ (2007) Leaflet movement of Robinia pseudoacacia in response to a changing light environment. J Integr Plant Biol 49:419–424. doi:10.1111/j.1744-7909.2007.00392.x
  • Liu LX, Xu SM, Woo KC (2003) Influence of leaf angle on photosynthesis and the xanthophyll cycle in the tropical tree species Acacia crassicarpa. Tree Physiol 23:1255–1261
  • Mediavilla S, Escudero A (2003) Mature tree versus seedlings: differences in leaf traits and gas exchange patterns in three co-occurring Mediterranean oaks. Ann Sci 60:455–460. doi: 10.1051/forest:2003038
  • Moshelion M, Becker D, Czempinski K, Mueller-Roeber B, Attali B, Hedrich R, Moran N (2002) Diurnal and circadian regulation of putative potassium channels in a leaf moving organ. Plant Physiol 128:634–642. doi:10.1104/pp.010549
  • Muraoka H, Takenaka A, Tang YH, Koizumi H, Washitani I (1998) Flexible leaf orientations of Arisaema heterophyllum maximize light capture in a forest understorey and avoid excess irradiance at a deforested site. Ann Bot (Lond) 82:297–307. doi: 10.1006/anbo.1998.0682
  • Niinemets Ü, Kollist H, García-Plazaola JI, Hernández A, Becerril JM (2003) Do the capacity and kinetics for modification of xanthophyll cycle pool size depend on growth irradiance in temperate trees? Plant Cell Environ 26:1787–1801. doi:10.1046/j.1365-3040.2003.01096.x
  • Osmond CB, Grace SC (1995) Perspectives on photoinhibition and photorespiration in the field: quintessential inefficiencies of the light and dark reactions of photosynthesis. J Exp Bot 46:1351–1362
  • Parker WC, Mohammed GH (2000) Photosynthetic acclimation of shade-grown red pine (Pinus resinosa Ait.) seedlings to high light environment. New For 19:1–11. doi:10.1023/A: 1006668928091
  • Proietti P, Palliotti A (1997) Contribution of adaxial and abaxial surfaces of olive leaves to photosynthesis. Photosynthetica 33:63–69. doi:10.1023/A:1022175221813
  • Quero JL, Villar R, Marañón T, Zamora R (2006) Interactions of drought and shade effects on seedlings of four Quercus species: physiological and structural leaf responses. New Phytol 170:819–834. doi:10.1111/j.1469-8137.2006.01713.x
  • Quick WP, Stitt M (1989) An examination of factors contributing to non-photochemical quenching of chlorophyll fluorescence in barley leaves. Biochim Biophys Acta 977:287–296. doi:10.1016/S0005-2728(89)80082-9
  • Ralph PJ, Gademann R (2005) Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat Bot 82:222–237. doi: 10.1016/j.aquabot.2005.02.006
  • Richards RA, Rawson HM, Johnson DA (1986) Glaucousness in wheat: its development and effect on water-use efficiency, gas exchange and photosynthetic tissue temperatures. Aust J Plant Physiol 13:465–473
  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62. doi:10.1007/BF00024185
  • Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, Berlin, pp 49–70
  • Sharma VK, Bardal TK, Johnsson A (2003) Light-dependent changes in the leaflet movement rhythm of the plant Desmodium gyrans. Z Naturforsch 58c:81–86
  • Smith M, Ullberg D (1989) Effect of leaf angle and orientation on photosynthesis and water relations in Silphium terebinthinaceum. Am J Bot 76:1714–1719. doi:10.2307/2444470
  • Sun JD, Nishio JN (2001) Why abaxial illumination limits photosynthetic carbon fixation in spinach leaves. Plant Cell Physiol 42:1–8. doi:10.1093/pcp/pce001
  • Thomas FM, Gausling T (2000) Morphological and physiological responses of oak seedlings (Quercus petraea and Q. robur) to moderate drought.Ann Sci 57:325–333. doi:10.1051/forest:2000123
  • Wang GG, Bauerle WL, Mudder BT (2006) Effects of light acclimation on the photosynthesis, growth, and biomass allocation in American chestnut (Castanea dentata) seedlings. For Ecol Manage 226:173–180. doi:10.1016/j.foreco.2005. 12.063
  • Wang RQ, Zhou GY (2000) The vegetation of Shandong Province. Shandong Science and Technology Publication, Jinan, pp 153–156
  • Werner C, Correia O, Beyschlag W (1999) Two different strategies of Mediterranean macchia plants to avoid photoinhibitory damage by excessive radiation levels during summer drought. Acta Oecol 20:15–23. doi:10.1016/S1146-609X(99)80011-3
  • White AJ, Critchley C (1999) Rapid light curves: a new fluorescence method to assess the state of the photosynthetic apparatus. Photosynth Res 59:63–72. doi:10.1023/A:1006188004189
  • Zhang SR, Ma KP, Chen LZ (2002) Photosynthetic gas exchange and leaflet movement of Robinia psedoacacia in relation to changing light environments. Acta Bot Sin 44:858–863
  • Zhang XQ, Liu J, Welham CVJ, Liu CC, Li DN, Chen L, Wang RQ (2006) The effects of clonal integration on morphological plasticity and placement of daughter ramets in black locust (Robinia pseudoacacia). Flora 201:547–554
Uwagi
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-84126267-9c1c-44a5-bdda-4056513cf30d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.