Warianty tytułu
Non-destructive quality assessment for food products using computer image analysis
Języki publikacji
Abstrakty
Celem prezentowanego artykułu jest przegląd informacji dotyczących możliwości zastosowania komputerowej analizy obrazu do oceny jakości mięsa i jego przetworów. Komputerowa analiza obrazu staje się narzędziem coraz częściej stosowanym w przemyśle rolno-spożywczym do oceny -wybranych -wizualnych parametrów jakości. Pozwala ona na uzyskanie powtarzalnego, szybkiego -wyniku ilościowego i/ lub jakościowego. Ponieważ próba nie ulega zniszczeniu, każdy produkt -w partii może podlegać tej ocenie. Przy -wykorzystaniu komputerowej analizy obrazu, -wybrane, krytyczne dlajakości atrybuty produktów spożywczych mogą być badane w systemie on-line, tak by uzyskana informacja mogła posłużyć zagwarantowaniu standardowej i powtarzalnej jakości końcowej produktu.
Computer image analysis is as non-destructive technology to assess and control the quality offood products. The implication of the presented analysis is, that the computer image analysis is becoming more commonly used in the food industry to assess chosen visual qualitative features. Computer image analysis is a method that enables repeatable and rapid, quantitative and/ or qualitative measurement and, taking into account, that measurement is non-destructive, each element of the batch may be controlled. Using computer image analysis, chosen, critical to quality, features offood products may be analyzed on-line, to guarantee standardized and repeatable quality of the final product.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
s.116-120,rys.,bibliogr.
Twórcy
autor
- Zakład Techniki w Żywieniu, Katedra Żywności Funkcjonalnej i Towaroznawstwa, Szkoła Główna Gospodarstwa Wiejskiego, Warszawa
autor
autor
Bibliografia
- [1] ABDULLAH M.Z., AZIZ S.A., MOHAMED A. M. D. 2000. Quality inspection of bakery products using a color-based machine vision system. Journal of Food Quality, 23 (1), 39-50.
- [2] BARBERA S., TASSONE S. 2006. Meat cooking shrinkage: Measurement of a new meat quality parameter. Meat Science, 73, 467-474.
- [3] BROSNAN T., SUN D-W. 2004. Improving quality inspection of food products by computer vision - a review. Journal of FoodEngineering, 61, 3-16.
- [4] CERNADAS E., CARRION P., RODRIGUEZ P. G., MURIEL E., ANTEQUERA T. 2005. Analyzing magnetic resonance images of Iberian pork loin to predict its sensorial characteristics. Computer Vision and Image Understanding, 98 (3), 345-361.
- [5] CHMIEL M., DASIEWICZ K, SŁOWIŃSKI M. 2010. Wpływ rozdrobnienia mięsa wołowego na dokładność szacowania zawartości tłuszczu metodą komputerowej analizy obrazu. Żywność. Nauka. Technologia. Jakość, 5 (72), 159-166.
- [6] CHMIEL M., DASIEWICZ K, SŁOWIŃSKI M. 2010. Ocena jakości drobnego mięsa wołowego metodą Komputerowej analizy obrazu. Żywność. Nauka. Technologia. Jakość, 6 (73), 219-227.
- [7] CHMIEL M., DASIEWICZ K 2010. Wykorzystanie komputerowej analizy obrazu do szacowania zawartości tłuszczu w drobnym mięsie wołowym. Postępy Techniki Przetwórstwa Spożywczego nr 1,61-64.
- [8] DU C.-J., SUN D.-W. 2005. Correlating shrinkage with yield, water content and texture of pork ham by computer vision. Journal of Food Engineering, 28 (3), 219-232.
- [9] DU C.-J., SUN D.-W. 2006. Estimating the surface area and volume of ellipsoidal ham using computer vision. Journal of Food Engineering, 73 (3), 260-268.
- [10] DU C.-J., SUN D.-W. 2004. Recent developments in the applications of image processing techniques for food quality evaluation. Trends in Food Science & Technology, 15 (5), 230-249.
- [11] EUROPEAN COMMUNITY. 2008. Commission Decision of 28 July 2008 amending Decision 2006/784/ EC as regards the authorisation of a method for grading pig carcasses in France (notified under document number C(2008) 3803). Official Journal of the European Union, 221.
- [12] EUROPEAN COMMUNITY. 2009. Commission Decision of 19 December 2008 authorising methods for grading pig carcases in Spain (notified under document number C(2008) 8477). Official Journal of the European Union, 6.
- [13] FANTAZZINI P., GOMBIA M., SCHEMBRI P., SI- MONCINI N., VIRGILI R 2009. Use of Magnetic Resonance Imaging for monitoring Parma dry-cured ham processing. Meat Science, 82 (2), 219-227.
- [14] FORTIN A., TONG A.K.W., ROBERTSON W.M., ZAWADASKI S.M., LANDRY S.J., ROBINSON D. J., LIU T., MOCKFORD R.J. 2003. A novel approach to grading pork carcasses: computer vision and ultrasound. Meat Science, 63 (3), 451-462.
- [15] FULLADOSA E., SANTOS-GARCES E., PI- COUET P., GOU P. 2010. Prediction of salt and water content in dry-cured hams by computed tomography. Journal of FoodEngineering, 96 (1), 80-85.
- [16] GUZEK D., WIERZBICKA A., GŁĄBSKA D. 2011. Potencjał oraz zastosowanie komputerowej analizy i przetwarzania obrazu w przemyśle rolno-spożywczym. Inżynieria Rolnicza, 4 (129), 67-73.
- [17] HE D. J., YANG Q., XUE S. P., GENG N. 1998. Computer vision for colour sorting of fresh fruits. Transactions of the Chinese Society of Agricultural Engineering, 4 (3), 202-205.
- [18] IRIE M., IZUMO A., MOHRIS. 1996. Rapid method for determining water holding capacity in meat using video image analysis and simple formulae. Meat Science, 42, 95-102.
- [19] JACKMAN P., SUN D.-W., ALLEN P. 2011. Recent advances in the use of computer vision technology in the quality assessment of fresh meats. Trends in Food Science & Technology, 22, 185-197.
- [20] JAHNS G., NIELSEN H.M., PAUL W. 2001. Measuring image analysis attributes and modelling fuzzy consumer aspects for tomato quality grading. Computers and Electronics in Agriculture, 31, 17-29.
- [21] JIA J., SCHINCKEL A.P., FORREST J.C., CHEN W., WAGNER J.R 2010. Prediction of lean and fat composition in swine carcasses from ham area measurements with image analysis. Meat Science, 85 (2), 240-244.
- [22] KRUTZ G.W., GIBSON H.G., CASSENS D.L., ZHANG M. 2000. Colour vision in forest and wood engineering. Landwards, 55, 2-9.
- [23] LI Q.Z., WANG M.H. 1999. Development and prospect of real time fruit grading technique based on computer vision. Transactions of the Chinese Society of Agricultural Engineering, 30 (6), 1-7.
- [24] LU J., TAN J., SHATADAL P., GERRARD D.E. 2000. Evaluation of pork color by using computer vision. Meat Science, 56, 57-60.
- [25] MAGOWAN E., MCCANN M.E.E. 2006. A comparison of pig backfat measurements using ultrasonic and optical instruments. Livestock Science, 103 (1), 116123.
- [26] MAYOR L., SERENO A.M. 2004. Modelling shrinkage during convective drying of food materials: a review. Journal of FoodEngineering, 61 (3), 373-386.
- [27] OLIVERA., MENDIZABAL J.A., RIPOLL G.,ALBERT! P., PURROY A. 2010. Predicting meat yields and commercial meat cuts from carcasses of young bulls of Spanish breeds by the SEUROP method and an image analysis system. Meat Science, 84, 628-633.
- [28] PARK B., CHEN Y.R 2000. Real-time dual-wavelength image processing for poultry safety inspection. Journal of Food Process Engineering, 23, 329-351.
- [29] QIAO J., NGADI M.O., WANG N., GARIEPY C., PRASHER S.O. 2007. Pork quality and marbling level assessment using a hyperspectral imaging system. Journal of FoodEngineering, 83 (1), 10-16.
- [30] QIAO J., WANG N., NGADI M.O., GUNENC A., MONROY M., GARIEPY C., PRASHER S.O. 2007. Prediction of drip-loss, pH, and color for pork using a hyperspectral imaging technique. Meat Science, 76 (1), 1-8.
- [31] SANCHEZ A.J., ALBARRACIN W., GRAU R, RI- COLFE C., BARAT J.M. 2008. Control of ham salting by using image segmentation. Food Control, 19(1), 135-142.
- [32] SHIRANITA K, HAYASHI K, OTSUBO A., MIY- AJIMA T., TAKIYAMA R 2000. Grading meat quality by image processing. Pattern Recognition, 33, 97-104.
- [33] SUN D.-W. 2004. Applications of computer vision in the food industry. Journal of Food Engineering, 61, 1-142 [special issue].
- [34] SUN D.-W. 2008. (editor): Computer Vision Technology for Food Quality Evaluation. 1st edition. Academic Press / Elsevier, San Diego, California, USA.
- [35] TAN F.J., MORGAN M.T., LUDAS L.I., FORREST J.C., GERRARD D.C. 2000. Assessment of fresh pork colour -with colour machine vision. Journal of Animal Science, 78 (12), 3078-3085.
- [36] TUKIENDORF M., BOSS J., KRÔTKIEWICZ M.2003. An application of picture analysis as a method of evaluation of granular blend's quality. Polish Journal of Food and Nutrition Sciences, 12/53 (2), 27-30.
- [37] VESTERGAARD C., ERBOU S.G., THAULAND T., ADLER-NISSEN J., BERG P. 2005. Salt distribution in dry-cured ham measured by computed tomography and image analysis. Meat Science, 69 (1), 9-15.
- [38] WANG H.H., SUN D.-W. 2001. Evaluation of the functional properties of cheddar cheese using a computer vision method. Journal of Food Engineering, 49, 47-51.
- [39] WANG L.J., SUN D.-W. 2002. Modelling vacuum cooling process of cooked meat - part 2: mass and heat transfer of cooked meat under vacuum pressure. International Journal of Refrigeration, 25 (7), 862-871.
- [40] WOJNAR L., KURZYDOWSKI K.J., SZALA J. 2002. Praktyka analizy obrazu. Wyd I. Polskie Towarzystwo Stereologiczne. Krakow.
- [41] ZHENG C.X., SUN D.-W., DU C.-J. 2006. Estimating shrinkage of large cooked beef joints during airblast cooling by computer vision. Journal of Food Engineering, 72 (1), 56-62.
- [42] ZHOU H., WU J., ZHANG J. 2010. Digital Image Processing: Part I, 1st edition. Ventus Publishing ApS.
Uwagi
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-8167060b-c2d9-4c89-bfc7-4bd8c411aa62