Warianty tytułu
Języki publikacji
Abstrakty
Bacterial contamination is a serious problem in plant tissue culture procedures. An experiment was conducted to evaluate the potential of nano silver (NS) to remove bacterial contaminants of valerian nodal explants. This experiment was conducted as a completely randomized design in a factorial arrangement with four replications and each replicate with ten explants. Treatments involved NS at two stages (before and after surface sterilization along with control) with three rates (25, 50 and 100 mg l⁻¹) at three times of soaking (30, 60 and 180 min). Explants were cultured on MS medium supplemented with 5 mg l⁻¹ Kin and 0.1 mg l⁻¹ NAA. Results showed that using 100 mg l⁻¹ of NS solution after surface sterilization resulted in the highest percentage (89%) of disinfected explants. Nano silver solution did not affect the characters measured. On the basis of the data obtained in this experiment, it was concluded that NS had a good potential for removing of the bacterial contaminants in plant tissue culture procedures. As this is the first report on application of NS in in vitro culture techniques, further investigations on other plant species are needed to clarify the effectiveness of NS for the removal of bacterial contaminants in tissue culture of other crops.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.709-714,fig.,ref.
Twórcy
autor
- Department of Horticultural Science, College Agriculture, Shiraz University, Shiraz, Iran
autor
- Department of Horticultural Science, College Agriculture, Shiraz University, Shiraz, Iran
autor
- Department of Horticultural Science, College Agriculture, Shiraz University, Shiraz, Iran
Bibliografia
- Abdi Gh (2006) Factors affecting micropropagation of valerian (Valeriana officinalis L.) MSc Thesis, Shiraz University, Iran
- Barrett C, Cassells AC (1994) An evaluation of antibiotics for the elimination of Xanthomonas campestris pv pelargonii (brown) from Pelargonium x domesticum cv. ‘Grand Slam’ explants in vitro. Plant Cell Tissue Organ Cult 36:169–175
- Batarseh KI (2004) Anomaly and correlation of killing in the therapeutic properties of silver (I) chelating with glutamic and tartaric acids. J Antimicrob Chemother 54:546–548
- Bragg PD, Rannie DJ (1974) The effect of silver ions on the respiratory chain of E coli. Can J Microbiol 20:883–889
- Brown MRW, Anderson RA (1968) The bactericidal effect of silver ions on Pseudomonas aeruginosa. J Pharm Pharmacol 20(Suppl): 1S–3S
- Buckley PM, Reed BM (1994) Antibiotic susceptibility of plantassociated bacteria. HortScience 29:434 (Abst)
- Constantine DR (1986) Micropropagation in the commercial environment. In: Withers L, Alderson PG (eds) Plant tissue culture and its agricultural applications. Butterworth, London, pp 175–186
- Dibrov P, Dzioba J, Khoosheh K, Gosink K, Claudia C (2002) Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrob Agents Chemother 46:2668–2670
- Herman EB (ed) (1996) Microbial contamination of plant tissue cultures. Agritech Consultants Inc, Shrub Oak, USA, 84 p
- Horvath EM, Peter SO, Joët T (2000) Targeted inactivation of the plastid ndhB gene in tobacco results in an enhanced sensitivity of photosynthesis to moderate stomatal closure. Plant Physiol 123:1337–1350
- Hussain S, Lane SD, Price DN (1994) A preliminary evaluation of the use of microbial culture filtrates for the control of contaminants in plant tissue culture systems. Plant Cell Tissue Organ Cult 36:45–51
- Joët T, Couranc L, Horvath EM, Medgyesy P, Peltier G (2001) Increased sensitivity of photosynthesis to antimycin A induced by inactivation of the chloroplast ndhB gene. Evidence for a participation of the NADH-dehydrogenase complex to cyclic electron flow around photosystem I. Plant Physiol 125:1919–1929
- Karcher D, Bock R (1998) Site-selective inhibition of plastid RNA editing by heat shock and antibiotics: a role for plastid translocation in RNA editing. Nucleic Acids Res 26:1185–1190
- Leifert C, Cammota H, Waites WM (1992) Effect of combinations of antibiotics on micropropagated Clematis, Delphinium, Hosta, Iris and Photinia. Plant Cell Tissue Organ Cult 29:153–160
- Leifert C, Waites B, Keetley JW, Wright SM, Nicholas JR, Waites WM (2000) Effect of medium acidification on filamentous fungi, yeasts and bacterial contaminants in Delphinium tissue cultures. Plant Cell Tissue Organ Cult 42:149–155
- Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497
- Nomiya K, Yoshizawa A, Tsukagoshi K, Kasuga NC, Hirakava S, Watanabe J (2004) Synthesis and structural characterization of silver (I), aluminium (III) and cobalt (II) complexes with 4-isopropyltropolone (hinokitiol) showing noteworthy biological activities. Action of silver (I)-oxygen bonding complexes on the antimicrobial activities. J Inorg Biochem 98:46–60
- Pankhurst CE (1977) Symbiotic effectiveness of antibiotic-resistant mutants of fast and slow-growing strains of Rhizobium nodulating Lotus species. Can J Microbiol 23:1026–1033
- Salehi H, Khosh-Khui M (1997) A simple procedure of disinfection of ‘Baby Masquerade’ miniature rose explants. Sci Hortic 68:145–148
- Richards RME, Taylor RB, Xing DKL (1984) Effect of silver on whole cells and spheroplasts of a silver resistant Pseudomonas aeruginosa. Microbios 39:151–158
- Russell AD, Hugo WB (1994) Antimicrobial activity and action of silver. Prog Med Chem 31:351–371
- Smart DR, Ferro A, Ritchie K, Bugbee BG (1995) On the use of antibiotics to reduce rhizoplane microbial populations in root physiology and ecology investigations. Physiol Plant 95:533–540
- Sondi I, Salopek-Sondi B (2004) Silver nano particles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182
- Teixeira da Silva JA, Duong NT, Michi T, Seiichi F (2003) The effect of antibiotic on the in vitro growth response of chrysanthemum and tobacco stem transverse thin cell layers (tTcLs). Sci Hortic 97:397–410
- Thurmann RB, Gerba CP (1989) The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. Critic Rev Environ Cont 18:295–315
- Wells TN, Scully P, Paravicini G, Proudfoot AE, Payton MA (1995) Mechanism of irreversible inactivation of phosphomannose isomerases by silver ions and flamazine. Biochemistry 24:896–903
Uwagi
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-7f2be376-6da1-4b1a-b826-328ed56d6d4f