Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
Due to the rising use of antibiotics and as a consequence of their concentration in the environment an increasing number of antibiotic resistant bacteria is observed. The phenomenon has a hazardous impact on human and animal life. Sulfamethoxazole is one of thesulfonamides commonly detected in surface waters and soil. The aim of the study was to detect sulfamethoxazole resistance genes inactivated sludge biocenosis by use of in situ PCR and/or hybridization. So far no FISH probes for the detection of SMX resistance genes have been described in the literature. We have tested common PCR primers used for SMX resistance genes detection as FISH probes as well as a combination of in situ PCR and FISH. Despite the presence of SMX resistance genes in activated sludge confirmed via traditional PCR, the detection of the genes via microscopic visualization failed.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.167-173,fig.,ref.
Twórcy
autor
- Environmental Biotechnology Department, Faculty of Power and Environmental Engineering, Silesian University of Technology, St.Akademicka 2A, 44-100 Gliwice, Poland
autor
- Environmental Biotechnology Department, Faculty of Power and Environmental Engineering, Silesian University of Technology, St.Akademicka 2A, 44-100 Gliwice, Poland
autor
- Environmental Biotechnology Department, Faculty of Power and Environmental Engineering, Silesian University of Technology, St.Akademicka 2A, 44-100 Gliwice, Poland
autor
- Department of Water and Wastewater Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
autor
- Environmental Biotechnology Department, Faculty of Power and Environmental Engineering, Silesian University of Technology, St.Akademicka 2A, 44-100 Gliwice, Poland
autor
- Environmental Biotechnology Department, Faculty of Power and Environmental Engineering, Silesian University of Technology, St.Akademicka 2A, 44-100 Gliwice, Poland
Bibliografia
- Amann R.I., B.J. Binder, R.J. Olson, S.W. Chisholm, R. Devereux and D.A. Stahl. 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Envir. Microbiol. 56: 1919–1925.
- Antunes P., J. Machado, J.C. Sousa and L. Peixe. 2005. Dissemination of sulfonamide resistance genes (sul1, sul2, and sul3) in portuguese Salmonella enterica strains and relation with integrons. Antimicrob. Agents and Chemother. 49(2): 836–839.
- Bhandari A., L. Close, W. Kim, R.P. Hunter, D.E. Koch and R. Surampalli. 2008. Occurrence of ciprofloxacin, sulfamethoxazole, and azithromycin in municipal wastewater treatment plants. Practice periodical of hazardous, toxic, and radioactive waste management 275
- Bobrow M.N., T.D. Harris, K.J. Shaughnessy and G.J. Litt. 1989. Catalyzed reporter deposition, a novel method of signal amplification: application to immunoassays. J. Immunol. Methods 125: 279–285.
- Brunton L., B. Chabner and B. Knollman. 2006. Goodman and Gilman’s The Pharmacological Basis of Therapeutics. McGraw-Hill Professional, New York
- Cheng F. and R.E. Hodson. 2001. In situ PCR/RT-PCR coupled with in situ hybridization for detection of functional gene andgene expression in prokaryotic cells, pp. 409–424. In: Paul H.J. (ed): Methods in Microbiology 30. Academic Press, San Diego, USA.
- Czekalski N., T. Berthold, S. Caucci, A. Egli and H. Bürgmann. 2012. Increased levels of multiresistant bacteria and resistance genes after wastewater treatment and their dissemination into Lake Geneva, Switzerland. Frontiers in Microbiology 3(106): 2–18.
- Daims H., A. Brühl A., Amann R., Schleifer K.-H. And M. Wagner. 1999. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: Development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22: 434–444.
- Daims H., K. Stoecker and M. Wagner. 2005. Fluorescence in situ hybridization for the detection of prokaryotes, pp. 213–239. In: Molecular Microbial Ecology, ed. A.M. Osborn and J. Smith, Advanced methods in molecular microbial ecology. Bios-Garland, Abingdon, United Kingdom.
- da Silva M.F., I. Vaz-Moreira, M. Gonzalez-Pajuelo, O.C. Nunes and C.M. Manaia. 2007. Antimicrobial resistance patterns in Enterobacteriaceae isolated from an urban wastewater treatment plant. Microbiol. Ecol. 60: 166–176.
- Grape M., L. Sundstrom and G. Kronvall. 2003. Sulphonamide resistance gene sul3 found in Escherichia coli isolates from human sources. J. Antimicrob. Chemother. 52: 1022–1024.
- Hoa P.T.P., L. Nonaka, P.H. Viet and S. Suzuki. 2008. Detection of the sul1, sul2, and sul3 genes in sulfonamide-resistant bacteria from wastewater and shrimp ponds of north Vietnam. Sci. Total Environ. 405: 377–384.
- Hodson R., W. Dustman, R.P. Garg and M.A. Moran. 1995. In situ PCR for visualization of microscale distribution of specific genes and gene products in prokaryotic communities. Appl. Environ. Microbiol. 61(11): 4074–4082.
- Hoshino T., S. Tsuneda, A. Hirata and Y. Inamori. 2003. In situ PCR for visualizing distribution of a functional gene “amoA” in a biofilm regardless of activity. J. Biotechnol. 105(1–2): 33–40.
- van Hoek A. and H. Aarts. 2008. Microarray-based detection of antibiotic resistance genes in Salmonella. Food Anal. Methods. 1(2): 95–108.
- Kadlec K., C. Kehrenberg and S. Schwarz. 2005. Molecular basis of resistance to trimethoprim, chloramphenicol and sulphonamides in Bordetella bronchiseptica. J. Antimicrob. Chemother. 56: 485–490.
- Łuczkiewicz A., E. Felis, Z. Ziembińska, A. Gnida, E. Kotlarska, K. Olańczuk-Neyman and J. Surmacz-Górska. 2013. Resistance of Escherichia coli and Enterococcus spp. to selected antimicrobial agents present in municipal wastewater. J. Wat. Health, doi:10.2166/wh.2013.130
- Majtan T., L. Majtanova, J. Timko and V. Majtan. 2007. Oligonucleotide microarray for molecular characterization and genotyping of Salmonella spp. strains. J. Antimicrob. Chemother. 60: 937–946.
- Mohapatra H., S.S. Mohapatra, C.K. Mantri, R.R. Colwell and D.V. Singh. 2008. Vibrio cholerae non-O1, non-O139 strains isolated before 1992 from Varanasi, India are multiple drug resistant, contain intSXT, dfr18 and aadA5 genes. Environ. Microbiol. 10: 866–873.
- Pei R., S.C. Kim, K.H. Carlson and A. Pruden. 2006. Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Wat. Res. 40(12): 2427–2435.
- Perreten V. and P. Boerlin. 2003. A new sulfonamide resistance gene (sul3) in Escherichia coli is widespread in the pig population of Switzerland. Antimicrob. Agents Chemother. 47(3): 1169–1172.
- Skold O. 2000. Sulfonamide resistance Sulfonamide resistance: mechanisms and trends. Drug Resist. Updat. 3: 155–160.
- Srinivasan V., H.M. Nam, L.T. Nguyen, B. Tamilselvam, S.E. Murinda and S.P. Oliver. 2005. Prevalence of antimicrobial resistance genes in Listeria monocytogenes isolated from dairy farms. Foodborne Pathog. Dis. 2: 201–221.
- Stoecker K., C. Dorninger, H. Daims and M. Wagner. 2010. Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility. Appl. Environ. Microbiol. 76(3), 922–926.
- Szczepanowski R., B. Linke, I. Krahn, K.-H. Gartemann, T. Gützkow, W. Eichler, A. Pühler and A. Schlüter. 2009. Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater plant bacteria showing reduced susceptibility to selected antibiotics. Microbiol. 155: 2306–2319.
- Suzuki S. and P.T.P. Hoa. 2012. Distribution of quinolones, sulfonamides, tetracyclines in aquatic environment and antibiotic resistance in Indochina. Front Microbiol. 3: 67.
- WHO. 2013. Antimicrobial resistance. Fact sheet N°194.
- Zhang X-X., T. Zhang and H. Fang. 2009. Antibiotic resistance genes in water environment. Appl. Microbiol. Biotechnol. 82: 397–414.
- Zwirglmaier K., W. Ludwig and K.H. Schleifer. 2004.Recognition of individual genes in a single bacterial cell by fluorescence in situ hybridization – RING-FISH. Mol. Microbiol. 51(1): 89–96.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-7cd3f475-5438-4813-b400-7d3021ce96e2