Warianty tytułu
Języki publikacji
Abstrakty
The purpose of the study was to determine the cytotoxicity of commercial silver, gold, and copper nanocolloids towards two established cell lines (NIH/3T3 and GMK) and primar) chick embryo cell culture (CECC), using routine colorimetric assays: MTT, NRU, and LDH, which enable a preliminary evaluation of the mechanism of cytotoxic effect of the tested substances. The MTT assay evaluates the activity of mitochondria, NRU assay reveals the damage to lysosomes, while LDH assay shows injuries to the cytoplasmic membrane. The NRU assay proved to be non-applicable to the tested nanocolloids, most probably due to the interaction of nanoparticles with neutral red dye, which affected the colorimetric reaction. The MTT assay was more sensitive than LDH because the intercellular effect of a substance occurs before permanent damage to the cytoplasmic membrane. Silver nanocolloid was distinguished by the highest cytotoxicity, irrespective of the applied cell model, although the other two metals showed some cytotoxic effects as well, with gold nanocolloid being more toxic than copper one. Although the primary chick embryo cell culture, as a model reflecting more faithfully the conditions in a living organism than continuous cell lines, was undistinguished by elevated tolerance to the most toxic silver nanocolloid, it showed the tendency to recovery from the growth suppression with longer exposure after the application of less toxic gold and copper nanocolloids.
Słowa kluczowe
Wydawca
Rocznik
Tom
Numer
Opis fizyczny
p.115-122,fig.,ref.
Twórcy
autor
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
autor
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
Bibliografia
- 1. Agarwal A., Weis T.L., Schurr M.J., Faith N.G., Czuprynski C.J.. McAnulty J.F., Murphy C.J., Abbott N.L.: Surfaces modified with nanometer-thick silver-impregnated polymeric films that kill bacteria but support growth of mammalian cells. Biomaterials 2010, 31, 680-690.
- 2. Ahmadi F., Kurdestany A.H.: The impact of silver nano particles on growth performance, lymphoid organs and oxidative stress indicators in broiler chicks. Global Veterinaria 2010, 5, 366-370.
- 3. Arora S., Jain J., Rajwade J.M., Paknikar K.M.: Cellular responses induced by silver nanopartieles: in vitro studies. Toxicol Lett 2008, 179, 93-100.
- 4. Arora S., Jain J., Rajwade J.M., Paknikar K.M.: Interactions of silver nanopartieles with primary mouse fibroblasts and liver cells. Toxicol Appl Pharmacol 2009, 236, 310-318.
- 5. Borenfreund E., Puerner J.A.: A simple quantitative procedure using monolay er culture for toxicity assays. J Tissue Cult Meth 1984, 9, 7-9.
- 6. Braydich-Stolle L., Hussain S., Schlager J.J., Hofmann M.C.: In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 2005, 2, 412-419.
- 7. Chen Z., Meng H., Xing G., Chen C., Zhao Y., Jia G., Wang T., Yuan H., Ye C., Zhao F., Chai Z., Zhu C., Fang X., Ma B., Wan L.: Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 2006, 163, 109-120.
- 8. Chuang S.M., Lee Y.H., Liang R.Y., Roam G.D., Zeng Z.M., Tu H.F., Wang S.K., Chueh P.J.: Extensive evaluations of the cytotoxic effects of gold nanoparticles. Biochim Biophxs Acta 2013, 1830, 4960-4973.
- 9. Chueh P.J., Liang R.Y., Lee Y.H., Zeng Z.M., Chuang S.M.: Differential cytotoxic effects of gold nanoparticles in different mammalian cell lines. J Hazard Mater 2014, 264, 303-312.
- 10. Coradeghini R., Gioria S., Garcia C.P., Nativo P., Franchini F., Gilliland D., Ponti J., Rossi F.: Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicol Lett 2013, 217, 206-216.
- 11. Cui W., Li J., Zhang Y., Rong H., Lu W., Jiang L.: Effects of aggregation and the surface properties of gold nanoparticles on cytotoxicity and cell growth. Nanomedicine 2012, 8, 46-53.
- 12. Decker T., Lohmann-Matthes M.: A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Methods 1988, 115, 61-69.
- 13. Farkas J., Christian P., Urrea J.A., Roos N., Hassellöv M., Tollefsen K.E., Thomas K.V.: Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquat Toxicol 2010, 96, 44-52.
- 14. Fondevila M., Herrer R., Casallas M.C., Abecia L., Ducha J.J.: Silver nanoparticles as a potential antimicrobial additive for weaned pigs. Anim Feed Sci Technol 2009, 150, 259-269.
- 15. Fröhlich E., Roblegg E.: Models for oral uptake of nanoparticles in consumer products. Toxicology 2012, 291, 10-17.
- 16. Gonzales-Eguia A., Fu C.M., Lu F.Y., Lien T.F.: Effects of nanocopper on copper availability and nutrients digestibility, growth performance and serum traits of piglets. Livest Sci 2009, 126, 122-129.
- 17. Greulich C., Diendorf J., Gessmann J., Simon T., Habijan T., Eggeler G., Schildhauer T.A., Epple M., Köller M.: Cell type-specific responses of peripheral blood mononuclear cells to silver nanoparticles. Acta Biomater 2011, 7, 3505-3514.
- 18. Hsin Y.H., Chen C.F., Huang S., Shih T.S., Lai P.S., Chueh P.J.. The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 2008, 179, 130-139.
- 19. Hussain S.M., Hess K.L., Gearhart J.M., Geiss K.T., Schlager J.J.: In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 2005, 19, 975-983.
- 20. Karlsson H.L., Cronholm P., Hedberg Y., Tornberg M., De Battice L., Svedhem S., Wallinder I.O.: Cell membrane damage and protein interaction induced by copper containing nanoparticles - importance of the metal release process. Toxicology 2013, 313, 59-69.
- 21. Kim Y.S., Kim J.S., Cho U.S., Rha D.S., Kim J.M., Park J.D., Choi B.S., Lim R., Chang H.K., Chung Y.H., Kwon I.H., Jeong J., Han B.S., Yu I.J.: T wenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 2008, 20, 575-583.
- 22. Mosmann T.: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983, 65, 55-63.
- 23. Nel A., Xia T., Mädler L., Li N.: Toxic potential of materials at the nanolevel. Science 2006, 311, 622-627.
- 24. Park E.J., Yi J., Kim Y., Choi K., Park K.: Silver nanoparticles induce cytotoxicity by a Trojan-horse t\pe mechanism. Toxicol In Vitro 2010, 24, 872-878.
- 25. Park M.V., Neigh A.M., Vermeulen J.P., Fonteyne L.J., Verharen H.W., Briede J.J., Loveren H., Jong W.H.: The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 2011, 32, 9810-9817.
- 26. Rosas-Hernandez H., Jimenez-Badillo S., Martinez-Cuevas P.P., Gracia-Espino E., Terrones H., Terrones M., Hussain S.M., Ali S.F., Gonzalez C.: Effects of 45-nm silver nanoparticles on coronary endothelial cells and isolated rat aortic rings. Toxicol Lett 2009, 191, 305-313.
- 27. Studer A.M., Limbach L.K., Van Duc L., Krumeich F., Athanassiou E.K., Gerber L.C., Moch H., Stark W.J.: Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicol Lett 2010, 197, 169-174.
- 28. Yen H.J., Hsu S.H., Tsai C.L.: Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small 2009, 5, 1553-1561.
- 29. Zhang X.D., Wu H.Y., Wu D., Wang Y.Y., Chang J.H., Zhai Z.B., Meng A.M., Liu P.X., Zhang L.A., Fan F.Y.: Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int J Nanomed 2010, 5, 771-781.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-7bfca703-7474-4010-9f57-6f0abcc99eec