Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 02 |
Tytuł artykułu

Effects of root colonization by symbiotic arbuscular mycorrhizal fungi on the yield of pharmacologically active compounds in Angelica archangelica L.

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The major effects of arbuscular mycorrhizal fungi (AMF) colonization on plant growth, monoterpenoids and coumarins were determined in two genotypes of angelica (Angelica archangelica L., Apiaceae). Genetically uniform experimental plants were used, which was achieved by in vitro propagation of two genotypes (individual plants). The effects of Glomus mosseae (Funneliformis mosseae, BEG 12), Glomus intraradices (Rhizophagus intraradices, BB-E) and the AMF mixture Symbivit were tested against a negative (without AMF and without additional phosphorus) and a positive (KH2-PO4 without AMF) control in five plants per treatment. All in all 50 plants were investigated. Fifteen monoterpenoid and seven coumarin compounds were quantitatively determined in the rhizome and coarse root fractions by means of GC/MS using an internal standard. The sum of the monoterpenoids and coumarins was calculated. Concentrations of compounds rather slightly decreased upon inoculation with AMF when compared to the control. In contrast, biomass increased showing the highest amounts for plants treated with G. mosseae. These results finally caused a marked increase in yield for G. mosseae treated plants compared to the control. Phosphorus treatment led to the lowest yield with significant results for coumarins and in particular for osthole compared to G. mosseae treatment. This is also evidence of an independent effect from an increased phosphorus uptake due to root colonization by AMF. In summary, the results showed a marked increase in yield of all investigated compounds through treatment with G. mosseae compared to the control group, even if the level of significance was just barely missed presumably on account of the small sample size.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
37
Numer
02
Opis fizyczny
Article: 21 [11 p.], fig.,ref.
Twórcy
  • Department for Farm Animals and Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Veterinarplatz 1, 1210 Vienna, Austria
autor
  • Department for Farm Animals and Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Veterinarplatz 1, 1210 Vienna, Austria
  • Department for Farm Animals and Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Veterinarplatz 1, 1210 Vienna, Austria
  • Division of Plant Protection, University of Natural Resources and Life Sciences, Vienna, Austria
autor
  • Department of Pharmacognosy, University of Vienna, Vienna, Austria
autor
  • Department of Pharmacognosy, University of Vienna, Vienna, Austria
autor
  • Medical University of Vienna, Vienna, Austria
  • Medical University of Vienna, Vienna, Austria
autor
  • Department for Farm Animals and Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Veterinarplatz 1, 1210 Vienna, Austria
Bibliografia
  • Adams RP (2001) Identification of essential oil components by gas chromatography/mass spectroscopy. Allured Publishing, Carol Stream
  • Akiyama K, Hayashi H (2002) Arbuscular mycorrhizal funguspromoted accumulation of two new triterpenoids in cucumber roots. Biosci Biotechnol Biochem 66:762–769
  • Awasthi A, Bharti N, Nair N, Singh R, Shukla AK, Gupta MM, Darokar MP, Kalra A (2011) Synergistic effect of Glomus mosseae and nitrogen fixing Bacillus subtilis strain Daz26 on artemisinin content in Artemisia annua L. Appl Soil Ecol 49:125–130
  • Bradley P (2006) British herbal compendium—a handbook of scientific information on widely used plant drugs, vol 2. British Herbal Medicine Association, Bournemouth, pp 18–21
  • Bruneton J (1999) Pharmacognosy, phytochemistry, medicinal plants, 2nd edn. Intercept Ltd, Andover
  • Chalchat JC, Garry RP (1997) Essential oil of angelica roots (Angelica archangelica L.): optimization of distillation, location in plant and chemical composition. J Essent Oil Res 9:311–319
  • Chandhoke N, Ghatak BJR (1975) Pharmacological investigations of angelicin—a tranquillosedative and anticonvulsant agent. Indian J Med Res 63:833–841
  • Chaudhary V, Kapoor R, Bhatnagar AK (2008) Effectiveness of two arbuscular mycorrhizal fungi on concentrations of essential oil and artemisinin in three accessions of Artemisia annua L. Appl Soil Ecol 40:174–181
  • Chevallier A (2001) The encyclopedia of medicinal plants. Dorling Kindersley, London
  • Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. genovese. Mycorrhiza 16:485–494
  • Eeva M, Rauha JP, Vuorela P, Vuorela H (2004) Computer assisted, high-performance liquid chromatography with mass spectrometric detection for the analysis of coumarins in Peucedanum palustre and Angelica archangelica. Phytochem Anal 15:167–174
  • European Directorate for the Quality of Medicines & Health Care (EDQM) (2013) European Pharmacopoeia, 7th edn. EDQM, Strasbourg
  • Fan JH, Yang GT, Mu LQ, Zhou JH (2006) Effect of AM fungi on the content of berberine, jatrorrhizine and palmatine of Phellodendron amurense seedlings. Prot For Sci Technol 5:24–26
  • Farzaneh M, Vierheilig H, Lössl A, Kaull HP (2011) Arbuscular mycorrhiza enhances nutrient uptake in chickpea. Plant Soil Environ 57:465–470
  • Fester T, Hause B, Schmidt D, Halfmann K, Schmidt J, Wray V, Hause G, Strack D (2002) Occurrence and localization of apocarotenoids in arbuscular mycorrhizal plant roots. Plant Cell Physiol 43:256–265
  • Fitze D, Wiepning A, Kaldorf M, Ludwig-Muller J (2005) Auxins in the development of an arbuscular mycorrhizal symbiosis in maize. J Plant Physiol 162:1210–1219
  • Geneva MP, Stancheva IV, Boychinova MM, Mincheva NH, Yonova PA (2010) Effects of foliar fertilization and arbuscular mycorrhizal colonization on Salvia officinalis L. growth, antioxidant capacity, and essential oil composition. J Sci Food Agric 90:696–702
  • Gericke S, Kurmies B (1952) Die kolorimetrische Phosphorsäurebestimmung mit Ammonium-Vanadat-Molybdat und ihre Anwendung in der Pflanzenanalyse. Z Pflanzenernähr Düng Bodenkd 59:235–247
  • Hadwiger A, Neimann H, Kaebisch A, Bauer H, Tamura T (1986) Appropriate glucosylation of the FMS gene product is a prerequisite for its transforming potency. EMBO J 5:689–694
  • Härmälä P, Vuorela H, Hiltunen R, Nyiredi S, Sticher O, Törnquist K, Kaltia S (1992) Strategy for the isolation and identification of coumarins with calcium antagonistic properties from the roots of Angelica archangelica. Phytochem Anal 3:42–48
  • He XL, Li J, He C (2009) Effects of AM fungi on the chemical components of Salvia miltiorrhiza Bge. Chin Agric Sci Bull 25:182–185
  • Hohnjec N, Vieweg MF, Pühler A, Becker A, Küster H (2005) Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Plant Physiol 137:1283–1301
  • Kapoor R, Giri B, Mukerji KG (2004) Improved growth and essential oil yield and quality in Foeniculum vulgare on mycorrhizal inoculation supplemented with P-fertilizer. Bioresour Technol 93:307–311
  • Kerrola K, Galambosi B, Kallio H (1994) Characterization of volatile composition and odor of angelica (Angelica archangelica subsp. archangelica L.) root extracts. J Agric Food Chem 42:1979–1988
  • Khaosaad T, Vierheilig H, Nell M, Zitterl-Eglseer K, Novak J (2006) Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza 16:443–446
  • Khaosaad T, Krenn L, Medjakovic S, Ranner A, Lössl A, Nell M, Jungbauer A, Vierheilig H (2008) Effect of mycorrhization on the isoflavone content and the phytoestrogen activity of red clover. J Plant Physiol 165:1161–1167
  • Khayyal MT, El-Ghazaly MA, Kenawy SA, Seif-El-Nasr M, Mahran LG, Kafafi YAH, Okpanyi SN (2001) Antiulcerogenic effect of some gastrointestinally acting plant extracts and their combination. Arzneim-Forsch Drug Res 51:545–553
  • Kosuge T, Yokota M, Sugiyama K, Yamamoto T, Mure T, Yamazawa H (1985) Studies on bioactive substances in crude drugs used for arthritic diseases in traditional Chinese medicine. II. Isolation and identification of an anti-inflammatory and analgesic principle from the root of Angelica pubescens Maxim. Chem Pharm Bull 33:5351–5354
  • Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984
  • Larose G, Chenevert R, Moutoglis P, Gagne S, Piché Y, Vierheilig H (2002) Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. J Plant Physiol 159:1329–1339
  • Lawrence BM (1989) Progress in essential oils. Perfum Flavor 14:41–56
  • Lawrence BM (1996) Progress in essential oils. Perfum Flavor 21:57–68
  • Lee J, Scagel CF (2009) Chicoric acid found in basil (Ocimum basilicum L.) leaves. Food Chem 115:650–656
  • Lingua G, Bona E, Manassero P, Marsano F, Todeschini V, Cantamessa S, Copetta A, D'Agostino G, Gamalero E, Berta G (2013) Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads increases anthocyanin concentration in strawberry fruits (Fragaria x ananassa var. selva) in conditions of reduced fertilization. Int J Mol Sci 14:16207–16225
  • Liu HL, Tan Y, Nell M, Zitterl-Eglseer K, Wawrosch C, Kopp B, Wang SM, Novak J (2014) Arbuscular mycorrhizal fungal colonization of Glycyrrhiza glabra roots enhances plant biomass, phosphorus uptake and concentration of root secondary metabolites. J Arid Land 6:186–194
  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501
  • McLafferty FW (1989) Wiley registry of mass spectral data, 5th edn. Wiley, New York
  • Meng JJ, He XL (2011) Effects of AM fungi on growth and nutritional contents of Salvia miltiorrhiza Bge. under drought stress. J Agric Univ Hebei 34:51–61
  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497
  • Nell M, Vötsch M, Vierheilig H, Steinkellner S, Zitterl-Eglseer K, Franz Ch, Novak J (2009) Effect of phosphorus uptake on growth and secondary metabolites of garden sage (Salvia officinalis L.) J Sci Food Agric 89:1090–1096
  • Nell M, Wawrosch C, Steinkellner S, Vierheilig H, Kopp B, Lössl A, Franz Ch, Novak J, Zitterl-Eglseer K (2010) Root colonization by symbiotic arbuscular mycorrhizal fungi increases sesquiterpenic acid concentrations in Valeriana officinalis L. Planta Med 76:393–398
  • Rapparini F, Llusiá J, Penuelas J (2008) Effect of arbuscular mycorrhizal (AM) colonization on terpene emission and content of Artemisia annua L. Plant Biol 10:108–122
  • Recorbet G, Valot B, Robert F, Gianinazzi-Pearson V, Dumas-Gaudot E (2010) Identification of in planta-expressed arbuscular mycorrhizal fungal proteins upon comparison of the root proteomes of Medicago truncatula colonized with two Glomus species. Fungal Genet Biol 47:608–618
  • Roos G, Waiblinger J, Zschocke S, Liu JH, Klaiber I, Kraus W, Bauer R (1997) Isolation, identification and screening for COX-1 and 5-LO-inhibition of coumarins from Angelica archangelica. Pharm Pharmacol Lett 4:157–160
  • Rosa-Mera CJD, Ferrera-Cerrato R, Alarco´n A, Sánchez-Colin MJ, David OD (2011) Arbuscular mycorrhizal fungi and potassium bicarbonate enhance the foliar content of the vinblastine alkaloid in Catharanthus roseus. Plant Soil 349:367–376
  • Sarker SD, Nahar L (2004) Natural medicine: the genus Angelica. Curr Med Chem 11:1479–1500
  • Schliemann W, Schmidt J, Nimtz M, Wray V, Fester T, Strack D (2006) Accumulation of apocarotenoids in mycorrhizal roots of Ornithogalum umbellatum. Phytochemistry 67:1196–1205
  • Simon JE, Chadwick AF, Craker LE (1984) Herbs. An indexed bibliography. 1971–1980. The scientific literature on selected herbs, and aromatic and medicinal plants of the temperate zone. Archon books, Hamden
  • Singh R, Soni SK, Kalra A (2013) Synergy between Glomus fasciculatum and a beneficial Pseudomonas in reducing root diseases and improving yield and forskolin content in Coleus forskohlii Briq. under organic field conditions. Mycorrhiza 23:35–44
  • Smith SE, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Academic press/Elsevier Ltd, London
  • Tal B, Robeson DJ (1986) The induction by fungal inoculation of ayapin and scopoletin biosynthesis in Helianthus annuus. Phytochemistry 25:77–80
  • Teng HR, He XL (2005) Effects of different AM fungi and N levels on the flavonoid content of Bupleurum scorzonerifolium Willd. J Shanxi Agric Sci 4:53–54
  • Tirillini B, Granetti B (1995) Coumarin-like compounds in mycorrhizal infection of Quercus pubescens Willd. with Tuber magnatum Pico and T. borchii Vitt. Micologia-Italiana 24:179–184
  • Torelli A, Trotta A, Acerbi L, Arcidiacono G, Berta G, Branca C (2000) IAA and ZR content in leek (Allium porrum L.), as influenced by P nutrition and arbuscular mycorrhizae, in relation to plant development. Plant Soil 226:29–35
  • Toussaint JP (2007) Investigating physiological changes in the aerial parts of AM plants: what do we know and where should we be heading? Mycorrhiza 17:349–353
  • Vierheilig H, Coughlan AP, Wyss U, Piché Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007
  • Wedge DE, Klun JA, Tabanca N, Demirci B, Ozek T, Baser KHC, Liu Z, Zhang S, Cantrell C, Zhang J (2009) Bioactivity-guided fractionation and GC/MS fingerprinting of Angelica sinensis and Angelica archangelica root components for antifungal and mosquito deterrent activity. J Agric Food Chem 57:464–470
  • Wei GT, Wang HG (1989) Effects of VA mycorrhizal fungi on growth, nutrient uptake and effective compounds in Chinese medicinal herb Datura stramonium L. Sci Agric Sin 22:56–61
  • Yu Y, Yu T, Wang Y, Yan XF (2010) Effects of inoculation time on camptothecin content in arbuscular mycorrhizal Camptotheca acuminata seedlings. Chin J Plant Ecol 34:687–694
  • Zeng Y, Guo LP, Chen BD, Hao ZP, Wang JY, Huang LQ, Yang G, Cui XM, Yang L, Wu ZX, Chen ML, Zhang Y (2013) Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants: current research status and prospectives. Mycorrhiza 23:253–265
  • Zhang Y, Xie LY, Xiong BQ, Zeng M, Yu D (2004) Correlation between the growth of arbuscular mycorrhizal fungi in the rhizosphere and the flavonoid content in the root of Ginkgo biloba. Mycosystema 23:133–138
  • Zhao JL, He XL (2011) Effects of AM fungi on drought resistance and content of chemical components in Angelica dahurica. Acta Agric Bor-Occi Sin 20:184–189
  • Zhao JL, Deng HY, He XL (2009) Effects of AM fungi on the quality of trueborne Angelica dahurica from Hebei province. Acta Agric Boreali-Sin 24:299–302
  • Zhou JH, Fan JH (2007) Effects of AM fungi on the berberine content in Phellodendron chinense seedlings. North Hortic 12:25–27
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-7bbcc367-e85d-4ba1-8f30-7274a9f17127
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.