Warianty tytułu
Języki publikacji
Abstrakty
This study explores the hunting habitat and activity patterns of the soprano pipistrelle Pipistrellus pygmaeus in relation to insect densities and light conditions during summer at 62°N in western Norway. Here, the first soprano pipistrelles emerge at several thousand lux and are common in woodland at more than 1000 lux. In this study, bats tagged with transmitters emerged from their roosts on average one hour before sunset and were airborne for more than five hours each night. During the first hours they always hunted in woodland, but shifted to hunt above the fiord during the night. This shift occurred on average 2 h and 25 min after evening emergence and 1 h and 30 min after sunset. In addition to using radio telemetry, bat contacts over the fiord were counted using ultrasound detectors and car transects. Simultaneously, insects were collected using suction traps and light levels were measured. There was a highly significant effect of light intensity on the number of bats hunting along the fiord. Predictions based on a second order polynomial generalised linear model (GLM) shows that soprano pipistrelles will start to hunt above the fiord when light levels drop below approximately 25 lux. It also suggests a slight reduction of insects as bat numbers increase along the shoreline. The GLM model explains approximately 92% of the variation in the dataset. Ultrasound recordings show that soprano pipistrelles attack far more prey per effort near the shores compared to areas further away. The results found in this study strongly suggest that habitat selection is a trade-off between food energy intake and other factors, e.g. predation risk.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.377-385,fig.,ref.
Twórcy
autor
- Department of Biology, University of Bergen, P.O. Box 7800, NO-5020 Bergen, Norway
- Nedre Hoffland 15, NO-6057 Alesund, Norway
autor
- Department of Biology, University of Bergen, P.O. Box 7800, NO-5020 Bergen, Norway
autor
- Department of Biology, University of Bergen, P.O. Box 7800, NO-5020 Bergen, Norway
Bibliografia
- 1. Agosta, S. J., D. Morton, and K. M. Kuhn. 2003. Feeding ecology of the bat Eptesicus fuscus: ‘preferred’ prey abundance as one factor influencing prey selection and diet breadth. Journal of Zoology (London), 260: 169–177. Google Scholar
- 2. Ahlén, I. 1990. Artbestämning av flygande fladdermöss. Natur-skyddsföreningen – Fältbiologerna, Stockholm, 54 pp. Google Scholar
- 3. Barataud, M. 2015. Acoustic ecology of European bats. Species identification, study of their habitats and foraging behaviour. Biotope — Muséum National d'Historie Naturelle, Paris, 349 pp. Google Scholar
- 4. Barton, K. 2015. package ‘MuMIn’ v. 1.15.6. Available at https://cran.r-project.org/package=MuMIn. Google Scholar
- 5. Bartonička, T., and Z. Řehák. 2004. Flight activity and habitat use of Pipistrellus pygmaeus in a floodplain forest. Mammalia, 68: 365–375. Google Scholar
- 6. Bartonička, T., Z. Řehák, and M. Andreas. 2008. Diet composition and foraging activity of Pipistrellus pygmaeus in a floodplain forest. Biologia, 63: 266–272. Google Scholar
- 7. Bogdanowicz, W., M. B. Fenton, and K. Daleszczyk. 1999. The relationship between echolocation calls, morphology and diet in insectivorous bats. Journal of Zoology (London), 247: 381–393. Google Scholar
- 8. Bolker, B. 2016. Dealing with quasi-models in R (February 11, 2016). Available at https://CRAN.R-project.org/package=bbmle. Google Scholar
- 9. Davidson, Watts I., and G. Jones. 2006. Differences in foraging behaviour between Pipistrellus pipistrellus (Schreber, 1774) and Pipistrellus pygmaeus (Leach,1825). Journal of Zoology (London), 268: 55–62. Google Scholar
- 10. Davidson, Watts I., S. Walls, and G. Jones. 2006. Differential habitat selection by Pipistrellus pipistrellus and Pipistrellus pygmaeus identifies distinct conservation needs for cryptic species of echolocating bats. Biological Conservation, 133: 118–127. Google Scholar
- 11. De Jong, J. 1995. Habitat use and species richness of bats in a patchy landscape. Acta Theriologica, 40: 237–248. Google Scholar
- 12. De Jong, J. and I. Ahlén. 1991. Factors affecting the distribution pattern of bats in Uppland, central Sweden. Holarctic Ecology, 14: 92–96. Google Scholar
- 13. Dietz, C., O. Von Helversen, and D. Nill. 2007. Handbuch der Fledermaüse Europas und Nordwestafrikas. Franckh-Cosmos Verlag GmbH & Co. KG, Stuttgart, 399 pp. Google Scholar
- 14. Ekman, M., and J. De Jong. 1996. Local patterns of distribution and resource utilization of four bat species (Myotis brandtii, Eptesicus nilssonii, Plecotus auritus and Pipistrellus pipistrellus) in patchy and continous environments. Journal of Zoology (London), 238: 571–580. Google Scholar
- 15. Frafjord, K. 2012. Influence of night length on home range size in the northern bat Eptesicus nilssonii. Mammalian Biology, 78: 205–211. Google Scholar
- 16. Haarsma, A. J., and H. Siepel. 2013. Macro-evolutionary trade-offs as the basis for the distribution of European bats. Animal Biology, 63: 451–471. Google Scholar
- 17. Haupt, M., S. Menzler, and S. Schmidt. 2006. Flexibility of habitat use in Eptesicus nilssonii: does the species profit from anthropogenically altered habitats? Journal of Mammalogy, 87: 351–361. Google Scholar
- 18. Humphries, M. M., D. W. Thomas, and J. R. Speakman. 2002. Climate-mediated energetic constraints on the distribution of hibernating mammals. Nature, 418: 313–31. Google Scholar
- 19. Johansson, M., and J. De Jong. 1996. Bat species diversity in a lake archipelago in central Sweden. Biodiversity and Conservation, 5: 1221–1229. Google Scholar
- 20. Kalko, E. K. V. 1995. Insect pursuit, prey capture and echolocation in pipistrelle bats (Microchiroptera). Animal Behaviour, 50: 861–880. Google Scholar
- 21. Kalko, E. K. V., and H.-U. Schnitzler. 1993. Plasticity in echo location signals of European pipistrelle bats in search flight: implications for habitat use and prey detection. Behavioral Ecology and Sociobiology, 33: 415–428. Google Scholar
- 22. Kaufman, D. M., and M. R. Willig. 1998. Latitudinal patterns of mammalian species richness in the New World: the effects of sampling method and faunal group. Journal of Biogeography, 25: 795–805. Google Scholar
- 23. Kunz, T. H. 1987. Postnatal growth and energetics of suckling bats. Pp. 395–420, in Recent advances in the study of bats ( M. B. Fenton, P. A. Racey, and J. M. V. Rayner, eds.). Cambridge University Press, Cambridge, 470 pp. Google Scholar
- 24. Lausen, C. L., and R. M. R. Barclay. 2006. Benefits of living in a building: big brown bats (Eptesicus fuscus) in rocks versus buildings. Journal of Mammalogy, 87: 362–370. Google Scholar
- 25. Lima, S. L., and J. M. O'keefe. 2013. Do predators influence the behaviour of bats? Biological Reviews, 88: 626–644. Google Scholar
- 26. Michaelsen, T. C. 2007. Roost emergence time and light tolerance of Northern bat Eptesicus nilssonii and soprano pipistrelle Pipistrellus pygmaeus at 62°N. Fauna (Oslo), 60: 272–279. [In Norwegian with English summary]. Google Scholar
- 27. Michaelsen, T. C. 2010. Steep altitudinal gradient can benefit lowland bats. Folia Zoologica, 59: 202–204. Google Scholar
- 28. Michaelsen, T. C. 2016a. Aspen Populus tremula is a key habitat for tree-dwelling bats in boreonemoral and south boreal woodlands in Norway. Scandinavian Journal of Forest Research, 31: 477–483. Google Scholar
- 29. Michaelsen, T. C. 2016b. Spatial and temporal distribution of bats (Chiroptera) in bright summer nights. Animal Biology, 16: 65–80. Google Scholar
- 30. Michaelsen, T. C. 2016c. Summer temperature and precipitation govern bat diversity at northern latitudes in Norway. Mammalia, 80: 1–9. Google Scholar
- 31. Michaelsen, T. C. 2017. Spatial distribution of bats (Chiroptera) in valleys at northern latitudes in Europe. Folia Zoologica, 66: 196–202. Google Scholar
- 32. Michaelsen, T. C., K. H. Jensen, and G. Högstedt. 2011. Topography is a limiting distributional factor in the soprano pipistrelle at its latitudinal extreme. Mammalian Biology, 76: 295–301. Google Scholar
- 33. Michaelsen, T. C., K. H. Jensen, and G. Högstedt. 2014. Roost site selection in pregnant and lactating soprano pipistrelles (Pipistrellus pygmaeus Leach, 1825) at the species northern extreme: the importance of warm and safe roosts. Acta Chiropterologica, 16: 349–357. Google Scholar
- 34. Nicholls, B., and P. A. Racey. 2006a. Habitat selection as a mechanism of resource partitioning in two cryptic bat species Pipistrellus pipistrellus and Pipistrellus pygmaeus. Echography, 29, 697–708. Google Scholar
- 35. Nicholls, B., and P. A. Racey. 2006b. Contrasting homerange size and spatial partitioning in cryptic and sympatric pipistrelle bats. Behavioral Ecology and Sociobiology, 61: 131–142. Google Scholar
- 36. Nyholm, E. S. 1965. Zur Ökologie von Myotis mystacinus (Leisl.) und M. daubentoni (Leisl.) (Chiroptera). Annales Zoologici Fennici, 2: 77–123. Google Scholar
- 37. Oakeley, S. F., and G. Jones. 1998. Habitat around maternity roosts of the 55 kHz phonic type of pipistrelle bats (Pipistrellus pipistrellus). Journal of Zoology (London), 245: 222–228. Google Scholar
- 38. R Core Team. 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at https://www.R–project.org/. Google Scholar
- 39. Russ, J. M. and W. I. Montgomery. 2002. Habitat associations of bats in Northern Ireland: implications for conservation. Biological Conservation, 108: 49–58. Google Scholar
- 40. Russo, D., L. Cistrone, and G. Jones. 2007. Emergence time in forest bats: the influence of canopy closure. Acta Oecologica, 31: 119–126. Google Scholar
- 41. Russo, D., L. Cistrone, A. P. Garonna, and G. Jones. 2011. The early bat catches the fly: daylight foraging in soprano pipistrelles. Mammalian Biology, 76: 87–89. Google Scholar
- 42. Rydell, J., A. Entwistle. and P. A. Racey. 1996. Timing of foraging flights of three species of bats in relation to insect activity and predation risk. Oikos, 76: 243–252. Google Scholar
- 43. Sattler, T., F. Bontadina, A. H. Hirzel, and R. Arlettaz. 2007. Ecological niche modeling of two cryptic bat species calls for a reassessment of their conservation status. Journal of Applied Ecology, 44: 1188–1199. Google Scholar
- 44. Skiba, R. 2003. Europäische Flädermause. Kennzeichen, Echoortung und Detektoranwendung. Die Neue Brehm-Bücherei, Hohenwarsleben, 220 pp. Google Scholar
- 45. Speakman, J. R., and J. Rydell. 2000. Avoidance behaviour in bats and insects: when is it predator defence? Oikos, 88: 221–223. Google Scholar
- 46. Speakman, J. R., J. Rydell, P. I. Webb, J. P. Hayes, G. C. Hays, I. Hulbert, and R. M. Mcdevitt. 2000. Activity patterns of insectivorous bats and birds in northern Scandinavia (69° N), during continuous midsummer daylight. Oikos, 88: 75–86. Google Scholar
- 47. Surlykke, A., V. Futtrup, and J. Tougaard. 2003. Prey-capture success revealed by echolocation signals in pipistrelle bats (Pipistrellus pygmaeus). Journal of Experimental Biology, 206: 93–104. Google Scholar
- 48. Ulrich, W., K. Sachanowicz, and M. Michalak. 2007. Environmental correlates of species richness of European bats (Mammalia: Chiroptera). Acta Chiropterologica, 9: 347–360. Google Scholar
- 49. Vaughan, N., G. Jones, and S. Harris. 1997. Habitat use by bats (Chiroptera) assessed by means of a broad-band acoustic method. Journal of Applied Ecology, 34: 716–730. Google Scholar
- 50. Wickramasinghe, L. P., S. Harris, G. Jones, and N. Vaughan. 2003. Bat activity and species richness on organic and conventional farms: impact of agricultural intensification. Journal of Applied Ecology, 40: 984–993. Google Scholar
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-728a2ad6-c6c0-48f5-87a6-478e0e5d983b