Warianty tytułu
Języki publikacji
Abstrakty
To investigate the molecular mechanism by which diets of different energy levels alter fat accumulation, 120 Black-Bone chickens were divided into 3 groups and fed diets with varying energy levels for six weeks (low: 3.02 Mcal/kg, moderate: 3.22 Mcal/kg, high: 3.42 Mcal/kg). The high-energy diet increased the concentration of blood lipids. Furthermore, high-energy intake inhibited the activities of several serum lipases. Histological sections showed over-synthesis of lipids in the livers of chickens fed high-energy diets. Data from western blotting and PCR analyses indicated that key factors for lipogenesis, regulatory transcription factors and fatty acid transporters, were up-regulated, while key factors for lipolysis were down-regulated. Chickens fed low-energy diets showed opposite results. In conclusion, varying energy levels of diets affect fat accumulation in Black-Bone chickens through changed expression of metabolic regulators.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.361-371,fig.,ref.
Twórcy
autor
- Northwest A and F University, College of Animal Science and Technology, Yangling 712100, P.R. China
autor
- Northwest A and F University, College of Animal Science and Technology, Yangling 712100, P.R. China
autor
- Northwest A and F University, College of Animal Science and Technology, Yangling 712100, P.R. China
autor
- Northwest A and F University, College of Animal Science and Technology, Yangling 712100, P.R. China
autor
- Northwest A and F University, College of Animal Science and Technology, Yangling 712100, P.R. China
Bibliografia
- Butler E.J., 1975. Lipid metabolism in the fowl under normal and abnormal circumstances. Proc. Nutr. Soc. 34, 29-34
- Chabowski A., Górski J.I., Bonen A., 2006. Regulation of fatty acid transport: from transcriptional to posttranscriptional effects. Naunyn Schmiedeberg’s Arch. Pharmacol. 373, 259-263
- Everent L., Galli A., Grabb D., 2000. The role of PPARs in health and disease. Liver 20, 191-199
- Jump D.B., 1999. Regulation of gene expression by dietary fat. Ann. Rev. Nutr. 19, 63-90
- Konig B., Koch A., Spielmann J., Christian H., Frank H., Gabriele S., Klaus E., 2009. Activation of PPARα and PPARγ reduces triacylglycerol synthesis in rat hepatoma cells by reduction of nuclear SREBP-1. Eur. J. Pharmacol. 605, 23-30
- Ma Y.Q., Yang J.M., Xia Z.S., 2006. Effects of different diets on performance and nutrient utilization of Hepu geese. Chinese J. Anim. Nutr. 18, 192-196
- Maier T., Leibundgut M., Ban N., 2008. The crystal structure of a mammalian fatty acid synthase. Science 321, 1315-1322.
- Mead J.R., Irvine S.A., Ramji D.P., 2003. Lipoprotein lipase: structure, function, regulation, and role in disease. J. Mol. Med. 80, 753-769
- NRC, 1994. Nutrient Requirements of Poultry. 9th revised Edition. National Academy Press. Washington, DC
- O’Hea E.K., Leveille G.A., 1969. Lipid biosynthesis and transport in the domestic chick (Gallus domesticus). Comp. Biochem. Physiol. 30, 149-159
- Özek K., Bahtiyarca Y., 2004. Effects of sex and protein and energy levels in the diet on the blood parameter of the chukar partridge. Brit. Poultry Sci. 45, 290-293
- Pettigrew J.E., Esnaola M.A., 2001. Swine nutrition and pork quality. Anim. Sci. 79, 316-342
- Pohl J., Ring A., Hermaann T., Stremmel W., 2004. Role of FATP in parenchymal cell fatty acid uptake. Biochim. Biophys. Acta 1686, 1-6
- Raben D.M., Baldassare J.J., 2005. A new lipase in regulating lipid mobilization: hormone-sensitive lipase is not alone. Trends Endocrinol. Metab. 16, 35-36
- Renaldi O., Pramono B., Sinorita H., Purnomo L.B., Asdie R.H., Asdie A.H., 2009. Hypoadiponectinemia: a risk factor for metabolic syndrome. Acta Med. Indonesia 41, 20-24
- Richards M., 2003. Genetic regulation of feed intake and energy balance in poultry. Poultry Sci. 82, 907-916
- Richards M., Poch S., Coon C., Rosebrough R., Ashell C., McMurtry J., 2003. Feed restriction significantly alters lipogenic gene expression in broiler breeder chickens. J. Nutr. 133, 707-715
- Smirnova E., Goldberg E.B., Makarova K.S., Lin L., Brown W.J., Jackson C.L., 2006. ATGL has a key role in lipid droplet/adiposome degradation in mammalian cells, EMBO Rep. 7, 106-113
- Smith S., Witkowski A., Joshi A.K., 2003. Structural and functional organization of the animal fatty acid synthase. Prog. Lipid Res. 42, 289-317
- Stahl A., 2004. A current review of fatty acid transport proteins (SLC27). Pflügers Arch. 447, 722-727
- Stahl A., Gimeno R.E., Tartaglia L.A., Lodish H.F., 2001. Fatty acid transport proteins: acurrent view of a growing family. Trends Endocrinol. Metab. 12, 269-273
- Sun C., Qi R.L., Wang L., Yan J., Wang Y., 2011. p38 MAPK regulates calcium signal-mediated lipid accumulation through changing VDR expression in primary preadipocytes of mice. Mol. Biol. Rep DOI: 10.1007/s11033-011-1084-8 (online)
- Thompson B.R., Lobo S., Bernlohr D.A., 2010. Fatty acid flux in adipocytes: The in’s and out’s of fat cell lipid trafficking. Mol. Cell. Endocrinol. 318, 24-33
- Tong L., 2005. Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery. Cell. Mol. Life Sci. 62, 1784-803
- Yoon M., 2009. The role of PPARα in lipid metabolism and obesity: Focusing on the effects of estrogen on PPARα actions. Pharmacol. Res. 60, 151-159
- Wen S., Shailja P., Zaixin Y., 2007. Effects of rosiglitazone and high fat diet on lipase/esterase expression in adipose tissue. Biochim. Biophys. Acta 1771, 177-184
- Zhang Y., Proenca R., Maffie M., Barone M., Leopold L., Friedman J., 1994. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425-432
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-702c6209-7552-497b-be2f-43dd7c5d04b8