Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 78 | 1 |
Tytuł artykułu

Experimental cerebral hemispherectomy in rodent models. A systematic review of current literature

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cerebral hemispherectomy is a neurosurgical procedure that involves surgically removing one hemisphere of the brain, used as a therapeutic option in severe cases of intractable epilepsy. Several animal models have contributed to our understanding of the underlying neuromechanisms. The review was based on a PubMed search using the terms “hemispherectomy” and “mouse” or “rat” or “rodent”, with no limitation of year of study or language. We identified a series of elements that were collected and analyzed that add up to our contemporary knowledge of this procedure. Our search returned 29 articles out of which only 15 are relevant to our purposes. Most of the current literature is concerned with the different molecular and electrophysiological issues of neuroplasticity, exhibiting the neurochemical background on which brain plasticity is founded. Experimental neurosurgery is quintessential in understanding the process in which various pathologies respond to in vivo animal models and recreating conditions otherwise difficult or impossible to obtain in humans. The aim of our study was to evaluate the current literature on the modern comprehension that animal models offer for histopathological, neurochemical and microsurgical research. In addition, the review is focused on the neuroplastic/compensatory mechanisms developed after hemispherectomy. Further research is of vital importance in exploring neurotherapeutical aspects of neuroplasticity in central nervous system (CNS) diseases.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
78
Numer
1
Opis fizyczny
p.14-20,ref.
Twórcy
  • Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
autor
  • Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
autor
  • Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
autor
  • Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
autor
  • Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
autor
  • Department of Neurosurgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
autor
  • Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
Bibliografia
  • Bandler R, Keay KA, Floyd N, Price J (2000) Central circuits mediating patterned autonomic activity during active vs. passive emotional coping. Brain Res Bull 53: 95–104.
  • Buzsáki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13: 407–420.
  • Cryan JF, Mombereau C, Vassout A (2005a) The tail suspension test as a model for assessing antidepressant activity: Review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 29: 571–625.
  • Cryan JF, Valentino RJ, Lucki I (2005b) Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci Biobehav Rev 29: 547–569.
  • Dandy WE (1928) Removal of right cerebral hemisphere for certain tumors with hemiplegia. JAMA 90: 823.
  • Dennis M (2010) Margaret Kennard (1899-1975): not a “principle” of brain plasticity but a founding mother of developmental neuropsychology. Cortex 46: 1043–1059.
  • Döring S, Cross H, Boyd S, Harkness W, Neville B (1999) The significance of bilateral EEG abnormalities before and after hemispherectomy in children with unilateral major hemisphere lesions. Epilepsy Res 34: 65–73.
  • Filgueiras CC, Abreu-Villaça Y, Krahe TE, Manhães AC (2006) Unilateral hemispherectomy at adulthood asymmetrically affects immobile behavior of male Swiss mice. Behav Brain Res 172: 33–38.
  • Fitch RH, Alexandre ML, Threlkeld SW (2013) Early neural disruption and auditory processing outcomes in rodent models: implications for developmental language disability. Front Syst Neurosci 7: 58.
  • Gonzalo LM, Torramadé J (1988) Hemispherectomy in the newborn hamster: effect on cell death in the extraocular motor nuclei. Brain Res Dev Brain Res 44: 309–313.
  • Greiner HM, Park YD, Holland K, Horn PS, Byars AW, Mangano FT, Smith JR, Lee MR, Lee KH (2011) Scalp EEG does not predict hemispherectomy outcome. Seizure 20: 758–763.
  • Hicks S P, D’Amato CJ (1970) Motor-sensory and visual behavior after hemispherectomy in newborn and mature rats. Exp Neurol 29: 416–438.
  • Huttenlocher PR, Bonnier C (1991) Effects of changes in the periphery on development of the corticospinal motor system in the rat. Brain Res Dev Brain Res 60: 253–260.
  • Kennard MA, Fulton JF (1942) Age and reorganization of central nervous system. Journal of the Mount Sinai Hospital 9: 594–606.
  • Kleim JA, Jones TA (2008) Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res 51: S225–S239.
  • Kornblum HI, Chugani HT, Tatsukawa K, Gall CM (1994) Cerebral hemidecortication alters expression of transforming growth factor alpha mRNA in the neostriatum of developing rats. Brain Res Mol Brain Res 21: 107-114.
  • Kossoff E H, Buck C, Freeman JM (2002) Outcomes of 32 hemispherectomies for Sturge-Weber syndrome worldwide. Neurology 59: 1735–1738.
  • Krahe TE, Filgueiras CC, Caparelli-Dáquer EM, Schmidt SL (2001) Contralateral rotatory bias in the free-swimming test after unilateral hemispherectomy in adult Swiss mice. Int J Neurosci 108: 21–30.
  • Machado AG, Shoji A, Ballester G, Marino R (2003) Mapping of the rat’s motor area after hemispherectomy: The hemispheres as potentially independent motor brains. Epilepsia 44: 500–506.
  • Mang CS, Campbell KL, Ross CJL, Boyd LA (2013) Promoting neuroplasticity for motor rehabilitation after stroke: considering the effects of aerobic exercise and genetic variation on brain-derived neurotrophic factor. Phys Ther 93: 1707–1716.
  • Mameli O, Caria MA, Pintus A, Padua G, Mameli S (2006) Sudden death in epilepsy: An experimental animal model. Seizure 15: 275–287.
  • Manhães AC, Abreu-Villaça Y, Schmidt SL, Filgueiras CC (2007) Neonatal transection of the corpus callosum affects rotational side preference in adult Swiss mice. Neurosci Lett 415: 159–163.
  • Marino R Jr, Machado AG, Timo-Iaria C (2001) Functional recovery after combined cerebral and cerebellar hemispherectomy in the rat. Stereotact Funct Neurosurg 76: 83-93.
  • Munz M, Gobert D, Schohl A, Poquérusse J, Podgorski K, Spratt P, Ruthazer ES (2014) Rapid Hebbian axonal remodeling mediated by visual stimulation. Science 344: 904–909.
  • Otte WM, van der Marel K, van Meer M PA, van Rijen PC, Gosselaar PH, Braun KPJ, Dijkhuizen RM (2015) Altered contralateral sensorimotor system organization after experimental hemispherectomy: a structural and functional connectivity study. J Cereb Blood Flow Metab 35:1358–1367.
  • Paes-Branco D, Abreu-Villaça Y, Manhães AC, Filgueiras CC (2012) Unilateral hemispherectomy at adulthood asymmetrically affects motor performance of male Swiss mice. Cereb Cortex 218: 465–476.
  • Sanes JN, Wang J, Donoghue JP (1992) Immediate and delayed changes of rat motor cortical output representation with new forelimb configurations. Cerebral Cortex 2: 141–152.
  • Smith SJ, Andermann F, Villemure JG, Rasmussen TB, Quesney LF (1991) Functional hemispherectomy: EEG findings, spiking from isolated brain postoperatively, and prediction of outcome. Neurology 41:1790–1794.
  • Sullivan RM, Szechtman H (1995) Asymmetrical influence of mesocortical dopamine depletion on stress ulcer development and subcortical dopamine systems in rats: implications for psychopathology. Neuroscience 65: 757–766.
  • Takatsuru Y, Fukumoto D, Yoshitomo M, Nemoto T, Tsukada H, Nabekura J (2009) Neuronal Circuit Remodeling in the Contralateral Cortical Hemisphere during Functional Recovery from Cerebral Infarction. J Neurosci 29: 10081–10086.
  • Umeda T, Funakoshi K (2014) Reorganization of motor circuits after neonatal hemidecortication. Neurosci Res 78: 30–37.
  • Xiao LY, Wang XR, Yang Y, Yang JW, Cao Y, Ma SM, Li TR, Liu CZ (2017) Applications of acupuncture therapy in modulating plasticity of central nervous system. Neuromodulation doi: 10.1111/ner.12724.
  • Wanakhachornkrai O, Umeda T, Isa K, Tantisira MH, Tantisira B, Isa T (2014) Reorganization of sensory pathways after neonatal hemidecortication in rats. Neurosci Res 79: 94–98.
  • Warraich Z, Kleim JA (2010) Neural plasticity: the biological substrate for neurorehabilitation. PM R 2: S208–S219.
  • Zecević N, Mojsilović J, Novaković B, Rakic L (1989) Brain plasticity after corpus callosum transection in the newborn rat. Metab Brain Dis 4: 25–31.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-6eeb2d32-46f4-4ad8-9fe7-def03b7a0c02
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.