Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 6 |
Tytuł artykułu

The physicochemical properties and composition of biomass ash and evaluating directions of its applications

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We researched industrial wood ash in order to assess its posed threats and possible applications. The ash is type S; due to the content of SiO₂, CaO, Al₂O₃, Kb>2O, Fe₂O₃, Na₂O, MgO, SO₃, and TiO2 it is alkaline (pH = 12.9) with small bulk density (<1.4 g/mL); and it is characterized by high fragmentation and irregularly shaped grains (research SEM/EDS). It has a high cationic-exchange capacity (56 mmol/100 g) and a negatively-charged surface (pH>pHPZC), which suggests the possibility of sorption cations. Research of the structure of phases present in the ash (FT-IR method) and physical or chemical changes with their accompanied thermal effects in the temperature range 25-900º (TG/DTG method) indicate no degradation of aluminum-silicon skeletons. Metals occur inside and in the surface layer of the grain (FAAS, SEM/EDS analyses). Research of fractionation of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn (classic Tessier’s method) indicated high mobility among others (Co 28.44%, Cr 20.49%, and Pb 16.51%), which poses a risk of environmental pollution. The obtained results indicate 2 directions of ash application: (i) limited environmental due to heavy metal and (ii) processing in geopolymer.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
27
Numer
6
Opis fizyczny
p.2593-2603,fig.,ref.
Twórcy
  • Department of Inorganic and Analytical Chemistry, Rzeszow University of Technology, Rzeszow, Poland
autor
  • Department of Inorganic and Analytical Chemistry, Rzeszow University of Technology, Rzeszow, Poland
  • Department of Inorganic and Analytical Chemistry, Rzeszow University of Technology, Rzeszow, Poland
Bibliografia
  • 1. NUNES L.J.R., MATIAS J.C.O., CATALÃO J.P.S. Biomass combustion systems: A review on the physical and chemical properties of the ashes. Renew. Sust. Energ. Rev. 53, 235, 2016.
  • 2. SAHU S.G., CHAKRABORTY N., SARKAR P. Coalbiomass co-combustion: An overview. Renew. Sust. Energ. Rev. 39, 575, 2014.
  • 3. PIWOWAR A., DZIKUĆ M. Outline of the economic and technical problems associated with the co-combustion of biomass in Poland. Renew. Sust. Energ. Rev. 54, 415, 2016.
  • 4. GARCÍA R., PIZARRO C., LAVÍN A. G., BUENO J.L. Biomass sources for thermal conversion. Technoeconomical overview. Fuel 195, 182, 2017.
  • 5. VASSILEV S.V., BAXTER D., ANDERSEN L.K., VASSILEVA C.G. An overview of the chemical composition of biomass. Fuel 89, 913, 2010.
  • 6. KALEMBKIEWICZ J., CHMIELARZ U. Ashes from co-combustion of coal and biomass: new industrial waste. Resour. Conserv. Rec. 69, 109, 2012.
  • 7. VASSILEV S.V., BAXTER D., VASSILEVA C.G. An overview of the behaviour of biomass during combustion: Part II. Ash fusion and ash formation mechanisms of biomass types. Fuel 117, 152, 2014.
  • 8. SCHIEMENZ K., EICHLER-LÖBERMANN B. Biomass ashes and their phosphorus fertilizing effect on different crops. Nutr. Cycl. Agroecosys. 87, 471, 2010.
  • 9. VASSILEV S.V., BAXTER D., ANDERSEN L.K., VASSILEVA C.G. An overview of the composition and application of biomass ash: Part 2. Potential utilisation, technological and ecological advantages and challenges. Fuel 105, 19, 2013.
  • 10. AHMARUZZAMAN M. A review on the utilization of fly ash. Prog. Energ. Combust. Science 36, 327, 2010.
  • 11. VASSILEV S.V., BAXTER D., ANDERSEN L.K., VASSILEVA C.G. An overview of the composition and application of biomass ash. Part 1. Phase-mineral and chemical composition and classification. Fuel 105, 44, 2013.
  • 12. VASSILEV S.V., VASSILEVA C.G., BAXTER D. Trace element concentrations and associations in some biomass ashes. Fuel 129, 292, 2014.
  • 13. LANZERSTORFER C. Chemical composition and physical properties of filter fly ashes from eight grate-fired biomass combustion plants. J. Environ. Sci. 30, 191, 2015.
  • 14. VASSILEV S.V., VASSILEVA C.G., VASSILEV V.S. Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. Fuel 158, 330, 2015.
  • 15. QIN J., HOVMAND M.F., EKELUND F., RØNN R., CHRISTENSEN S., ARJEN DEGROOT G., MORTENSEN L.H., SKOV S., KROGH P.H. Wood ash application increases pH but does not harm the soil mesofauna. Environ. Pollut. 224, 581, 2017.
  • 16. BUDHATHOKI R., VÄISÄNEN A. Particle size based recovery of phosphorus from combined peat and wood fly ash for forest fertilization. Fuel Process. Technol. 146, 85, 2016.
  • 17. FERNÁNDEZ-DELGADO JUÁREZ M., PRÄHAUSER B., WALTER A., INSAM H., FRANKE-WHITTLE I.H. Co-composting of biowaste and wood ash, influence on a microbially driven-process. Waste Manage. 46, 155, 2015.
  • 18. KIRKELUND G.M., DAMOE A.J., OTTOSEN L.M. Electrodialytic removal of Cd from biomass combustion fly ash suspensions. J. Hazard. Mater. 250-251, 212, 2013.
  • 19. NABEELA F., MURAD W., KHAN I., MIAN I.A., REHMAN H., ADNAN M., AZIZULLAH A. Effect of wood ash application on the morphological, physiological and biochemical parameters of Brassica napus L. Plant Physiol. Bioch. 95, 15, 2015.
  • 20. BRAIS S., BÉLANGER N., GUILLEMETTE T. Wood ash and N fertilization in the Canadian boreal forest: Soil properties and response of jack pine and black spruce. Forest Ecol. Manag. 348, 1, 2015.
  • 21. FERNÁNDEZ-DELGADO JUÁREZ M., GÓMEZ-BRANDÓN M., INSAM H. Merging two waste streams, wood ash and biowaste, results in improved composting process and end products. Sci. Total Environ. 511, 91, 2015.
  • 22. INGERSLEV M., HANSEN M., BOPEDERSEN L., SKOV S. Effects of wood chip ash fertilization on soil chemistry in a Norway spruce plantation on a nutrient-poor soil. Forest Ecol. Manag. 334, 10, 2014.
  • 23. SAQIB N., BÄCKSTRÖM M. Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature. Waste Manage. 34, 2505, 2014.
  • 24. OMIL B., PIÑEIRO V., MERINO A. Soil and tree responses to the application of wood ash containing charcoal in two soils with contrasting properties. Forest Ecol. Manag. 295, 199, 2013.
  • 25. EBERHARDT T.L., PAN H. Analysis of the fly ash from the processing of wood chips in a pilot-scale downdraft gasifier: Comparison of inorganic constituents determined by PIXE and ICP-AES. Biomass Bioenerg. 51, 163, 2013.
  • 26. SAKTHIVEL S.R., TILLEY E., UDERT K.M. Wood ash as a magnesium source for phosphorus recovery from sourceseparated urine. Sci. Total Environ. 419, 68, 2012.
  • 27. PARK N.D., RUTHERFORD P.M., THRING R.W., HELLE S.S. Wood pellet fly ash and bottom ash as an effective liming agent and nutrient source for rye grass (Lolium perenne L.) and oats (Avena sativa). Chemosphere 86, 427, 2012.
  • 28. CHEAH C. B., RAMLI M. The implementation of wood waste ash as a partial cement replacement material in the production of structural grade concrete and mortar: An overview. Resour. Conserv. Recy. 55, 669, 2011.
  • 29. STEENARI B.M., KARLFELDT FEDJE K. Addition of kaolin as potassium sorbent in the combustion of wood fuel – Effects on fly ash properties. Fuel 89, 2026, 2010.
  • 30. ROSENBERG O., PERSSON T., HÖGBOM L., JACOBSON S. Effects of wood-ash application on potential carbon and nitrogen mineralisation at two forest sites with different tree species, climate and N status. Forest Ecol. Manag. 260, 511, 2010.
  • 31. MOLLON L.C., NORTON G.J., TRAKAL L., MORENOJIMENEZ E., ELOUALI F.Z., HOUGH R.L., BEESLEY L. Mobility and toxicity of heavy metal(loid)s arising from contaminated wood ash application to a pasture grassland soil. Environ. Pollut. 218, 419, 2016.
  • 32. JONES D.L., QUILLIAM R.S. Metal contaminated biochar and wood ash negatively affect plant growth and soil quality after land application. J. Hazard. Mater. 276, 362, 2014.
  • 33. MORAGUES-SAITUA L., ARIAS-GONZÁLEZ A., GARTZIA-BENGOETXEA N. Effects of biochar and wood ash on soil hydraulic properties: A field experiment involving contrasting temperate soils. Geoderma 305, 144, 2017.
  • 34. REED E.Y., CHADWICK D.R., HILL P.W., JONES D.L. Critical comparison of the impact of biochar and wood ash on soil organic matter cycling and grassland productivity. Soil Biol. Biochem. 110, 134, 2017.
  • 35. TESSIER A., CAMPBELL P.G.C., BISSON M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51, 884, 1979.
  • 36. RAURET G., LOPEZ-SANCHEZ J.F., SAHUQUILLO A., RUBIO R., DAVIDSON C., URE A. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monit. Assess 1, 57, 1999.
  • 37. PRUDENT P., DOMEIZEL M., MASSINI C. Chemical sequential extraction as decision-making tool: application to municipal solid waste and its individual constituents. Sci. Tot. Environ. 178, 55, 1996.
  • 38. JUKIĆ M., ĆURKOVIĆ L., ŠABARIĆ J., KEROLLI-MUSTAFA M. Fractionation of heavy metals in fly ash from wood biomass using the BCR sequential extraction procedure. Bull. Environ. Contam. Toxicol. 99, 524, 2017.
  • 39. Using bio-ash as fertilizer [in] Materials of project “The heat from indigenous biomass” co-financed from European Regional Development Fund under the Cross-Border Cooperation Programme Poland (Lubuskie Province) – Brandenburgia 2007-2013 [In Polish and German]. Available online: http://www.projekt-biomasse.de/pl/wyniki-projektu/wyniki-projektu.html (accessed on 03.10.2017).
  • 40. FUKASAWA T., HORIGOME A., TSU T., KARISMA A.D., MAEDA N., HUANG A-N., FUKUI K. Utilization of incineration fly ash from biomass power plants for zeolite synthesis from coal fly ash by hydrothermal treatment. Fuel Process. Technol. 167, 92, 2017.
  • 41. ZHUANG X.Y., CHEN L., KOMARNENI S., ZHOU C.H., TONG D.S., YANG H.M., YU W.H., WANG H. Fly ash-based geopolymer: clean production, properties and applications. J. Clean Prod. 125, 253, 2016.
  • 42. KALEMBKIEWICZ J., CHMIELARZ U. Functional speciation and leachability of titanium group from industrial fly ash. Fuel 123, 73, 2014.
  • 43. SOČO E., KALEMBKIEWICZ J. Removal of copper(II) and zinc(II) ions from aqueous solution by chemical treatment of coal fly ash, Croat. Chem. Acta 88, 267, 2015.
  • 44. FAPOHUNDA C., AKINBILE B., SHITTU A. Structure and properties of mortar and concrete with rice husk ash as partial replacement of ordinary Portland cement – A review. Int. J. Sust. Built Environ. In press, 2017.
  • 45. GRAU F., CHOO H., HU J.W., JUNG J. Engineering behavior and characteristics of wood ash and sugarcane bagasse ash. Materials 8, 6962, 2015.
  • 46. SIDDIQUE R. Waste materials and by-products in concrete, 1st ed.; Springer-Verlag: Berlin Heidelberg (Germany), 307, 2008.
  • 47. KIKAMÄGI K., OTS K., KUZNETSOVA T. Effect of wood ash on the biomass production and nutrient status of young silver birch (Betula pendula Roth) trees on cutaway peatlands in Estonia. Ecol. Eng. 58, 17, 2013.
  • 48. FERNÁNDEZ-DELGADO JUAREZ M., GÓMEZ-BRANDÓN M., INSAM H. Merging two waste streams, wood ash and biowaste, results in improved composting process and end products. Sci. Total Environ. 511, 91, 2015.
  • 49. PANDEY V.C., SINGH N. Impact of fly ash incorporation in soil systems. Agr. Ecosys. Environ. 136, 16, 2010.
  • 50. MOZGAWA W., KRÓL M., DYCZEK J., DEJA J. Investigation of the coal fly ashes using IR spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 132, 889, 2014.
  • 51. SHI R., LI J., JIANG J., MEHMOOD K., LIU J., XU R., QIAN W. Characteristics of biomass ashes from different materials and their ameliorative effects on acid soils. J. Environ. Sci. (China) 55, 294, 2017.
  • 52. KOK M. V., ÖZGÜR E. Thermal analysis and kinetics of biomass samples. Fuel Process. Technol. 106, 739, 2013.
  • 53. WANG W., LIU X., ZHENG Y. Quantitative chemical composition determination and thermal analysis for typical biomass ashes in China. Asia. Pac. J. Chem. Eng. 9, 751, 2014.
  • 54. FEBRERO L., GRANADA E., PÉREZ C., PATIŇO D., ARCE E. Characterisation and comparison of biomass ashes with different thermal histories using TG-DSC. J. Therm. Anal. Calorim. 118, 669, 2014.
  • 55. HUANG S., WU S., WU Y., GAO J. The physicochemical properties and catalytic characteristics of different biomass ashes. Energ. Source Part A 36, 402, 2014.
  • 56. NIU Y., TAN H., HUI S. Ash-related issues during biomass combustion: Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures. Prog. Energy Combust. Sci. 52, 1, 2016.
  • 57. KASTNER J.R., MILLER J., KOLAR P., DAS K.C. Catalytic ozonation of ammonia using biomass char and wood fly ash. Chemosphere 75, 739, 2009.
  • 58. KUTCHKO B.G., KIM A.G. Fly ash characterization by SEM/EDS. Fuel 85, 2537, 2006.
  • 59. FLANIGEN E.M. Molecular sieve zeolite technology – the first twenty-five years. Pure Appl. Chem. 52, 2191, 1980.
  • 60. OGUNDIRAN M.B., OSIBANJO O. Mobility and speciation of heavy metals in soils impacted by hazardous waste. Chem. Spec. Bioavailab. 21, 59, 2009.
  • 61. FIOL N., VILLAESCUSA I. Determination of sorbent point charge: usefulness in sorption studies. Environ. Chem. Lett. 7, 79, 2009.
  • 62. MURAYAMA N., TANABE M., YAMAMOTO H., SHIBATA J. Reaction, Mechanism and application of various zeolite syntheses from coal fly ash. Mater. Trans. 44, 2475, 2003.
  • 63. PATHAN S.M., AYLMORE L.A.G., COLMER T.D. Properties of several fly ash materials in relation to use as soil amendments. J. Environ. Qual. 32, 687, 2003.
  • 64. DAVIDOVITS J. Geopolymer Chemistry and Applications 4th edition. Institut Géopolymère: Saint-Quentin (France), 3, 2015.
  • 65. VAN DEVENTER J.S.J., PROVIS J.L., DUXSON P. Technical and commercial progress in the adoption of geopolymer cement. Miner. Eng. 29, 89, 2012.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-6b5c4f64-be56-4291-b232-0b1dc3dc6d15
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.