Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 09 |
Tytuł artykułu

Stress-induced delta1-pyrroline-5-carboxylate synthetase (P5CS) gene confers tolerance to salt stress in transgenic sugarcane

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
High salinity interferes in sugarcane growth and development, affecting not only crop yield but also reducing sucrose concentration in culms. Sugarcane plants submitted to salt stress can accumulate compatible solutes, such as proline, which may counteract the effects of salt accumulation in the vacuole and scavenge reactive oxygen species. The objective of this study was to evaluate the response to salt stress of sugarcane plants transformed with the Vigna aconitifolia P5CS gene, which encodes Δ1- pyrroline-5-carboxylate synthetase, under the control of a stress-induced promoter AIPC (ABA-inducible promoter complex). For this, 4-month-old clonally multiplied sugarcane plants from two transformation events were irrigated every 2 days with 1/10 Hoagland’s solution supplemented with 100, 150 and 200 NaCl, progressively, during 28 days. Transgenic lines showed increased transgene expression in 3.75-fold when compared with the control plants after 9 days of irrigation with saline water, which can explain the higher proline concentration found in these plants. At the end of the experiment (day 28), the transgenic lines accumulated up to 25 % higher amounts of proline when compared with non-transformed control plants. Stress response in transgenic plants was also accompanied by a reduction of malondialdehyde (MDA) derived from cellular lipid peroxidation in leaves, lower Na⁺ accumulation in leaves and maintenance of photochemical efficiency of PSII. Thus, proline contributed to the protection of the photosynthetic apparatus and the prevention of oxidative damage in transgenic sugarcane under salt stress.
Wydawca
-
Rocznik
Tom
36
Numer
09
Opis fizyczny
p.2309-2319,fig.,ref.
Twórcy
  • Plant Biotechnology Laboratory, Instituto Agronomico do Parana (IAPAR), CP 481, Londrina, PR CEP 86001-970, Brazil
  • Graduation Program Agronomy, Sector de Ciencias Agrarias, Universidade Federal do Parana (UFPR), Curitiba, PR, Brazil
  • Plant Biotechnology Laboratory, Instituto Agronomico do Parana (IAPAR), CP 481, Londrina, PR CEP 86001-970, Brazil
  • Departamento de Biologia Geral, Centro de Ciencias Biologicas, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil
autor
  • Plant Biotechnology Laboratory, Instituto Agronomico do Parana (IAPAR), CP 481, Londrina, PR CEP 86001-970, Brazil
  • Plant Biotechnology Laboratory, Instituto Agronomico do Parana (IAPAR), CP 481, Londrina, PR CEP 86001-970, Brazil
autor
  • Plant Biotechnology Laboratory, Instituto Agronomico do Parana (IAPAR), CP 481, Londrina, PR CEP 86001-970, Brazil
  • Graduation Program in Agronomy, Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, SP, Brazil
Bibliografia
  • Ahire ML, Walunj PR, Kishor PBK, Nikam TD (2013) Effect of sodium chloride-induced stress on growth, proline, glycine betaine accumulation, antioxidative defence and bacoside A content in in vitro regenerated shoots of Bacopa monnieri (L.) Pennell. Acta Physiol Plant 35(6):1943–1953. doi:10.1007/s11738-013-1233
  • Ahmed CB, Magdich S, Rouina BB, Sensoy S, Boukhris M, Abdullah FB (2011) Exogenous proline effects on water relations and ions contents in leaves and roots of young olive. Amino Acids 40:565–573. doi:10.1007/s00726-010-0677-1
  • Akhtar S, Wahid A, Rasul E (2003) Emergence, growth and nutrient composition of sugarcane sprouts under NaCl salinity. Biol Plant 46:113–116. doi:10.1023/1022326604192
  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207
  • Blackburn F (1984) Sugarcane. Longman, London
  • Carvalho K, Campos MKF, Domingues SD, Pereira LFP, Vieira LGE (2013) The accumulation of endogenous proline induces changes in gene expression of several antioxidant enzymes in leaves of transgenic Swingle citrumelo. Mol Biol Rep 40(4):3269–3279. doi:10.1007/s11033-012-2402-5
  • Cha-um S, Kirdmanee C (2009) Proline accumulation, photosynthetic abilities and growth characters of sugarcane (Saccharum officinarum L.) plantlets in response to iso-osmotic salt and waterdeficit stress. Agric Sci China 8(1):51–58
  • Cramer GR, Lduchli A, Polito VS (1985) Displacement of Ca⁺ by Na⁺ from the plasmalemma of root cells. A primary response to salt stress? Plant Physiol 79:207–211
  • Davies KJ (1995) Oxidative stress: the paradox of aerobic life. Biochem Soc Symp 61:1–31
  • Errabii T, Gandonou CB, Essalmani H, Abrini J, Idaomar M, Senhaji NS (2007) Effect of NaCl and mannitol induced stress on sugarcane (Saccharum sp.) callus cultures. Acta Physiol Plant 29:95–102. doi:10.1007/s11738-006-0006-1
  • Ferreira WA (1980) Effect of vinasse in different soil textures. M.Sc. Thesis, University of São Paulo, SP, Brazil
  • Fricke W, Akhiyarova G, Veselov D, Kudoyarova G (2004) Rapid and tissue-specific changes in ABA and in growth rate response to salinity in barley leaves. J Exp Bot 55(399):1115–1123. doi:10.1093/117
  • Gandonou CB, Errabii T, Abrini J, Idaomar M, Senhaji NS (2006) Selection of callus cultures of sugarcane (Saccharum sp.) tolerant to NaCl and their responses to salt stress. Plant Cell Tissue Organ Cult 87:9–16. doi:10.1007/s11240-006-9113-3
  • Genc Y, Mcdonald GK, Tester M (2007) Reassessment of tissue Na⁺ concentration as a criterion for salinity tolerance in bread wheat. Plant Cell Environ 30:1486–1498. doi:10.1111/1365-3040.2007.01726
  • Hare PD, Cress WA, Van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–554. doi:10.1046/1365-3040.1998.00309
  • Hare PD, Cress WA, Van Standen J (2003) A regulatory role for proline metabolism in stimulation Arabidopsis thaliana seed germination. Plant Growth Regul 39:41–50. doi:10.1023/1021835902351
  • Heath R, Packer L (1968) Photoperoxidation in isolated choloplast I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. doi:10.1016/0003-9861(68) 90654-1
  • Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136. doi:10.1104/122.4.1129
  • Hu C-AA, Delauney AJ, Verma DPS (1992) A bifunctional enzyme (Δ1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc Natl Acad Sci USA 89:9354–9358
  • Hussain A, Khanz I, Ashraf M, Rashid MH, Akhtar MS (2004) Effect of salt stress on some growth attributes of sugarcane cultivars CP-77-400 and COJ-84. Int J Agric Biol 6:188–191
  • Iskandar HM, Casu R, Fletcher A, Schmidt S, Jingsheng Xu, Maclean DJ, Manners MJ, Bonnet GD (2011) Identification of drought-response genes and a study of their expression during sucrose accumulation and water deficit in sugarcane culms. BMC Plant Biol 11:12. doi:10.1186/1471-2229-11-12
  • Karim S, Aronsson H, Ericson H, Pirhonen M, Leyman B, Welin B, Mantyla E, Palva ET, Van Dijck P, Holmstrom K-O (2007) Improved drought tolerance without undesired side effects in transgenic plants producing trehalose. Plant Mol Biol 64:371–386. doi:10.1007/s11103-007-9159-6
  • Kumar V, Shriram V, Kavi-Kishor PB, Jawali N, Shitole MG (2010) Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over-expressing P5CSF129A gene. Plant Biotechnol Rep 4:37–48. doi:10.1007/s11816-009-0118-3
  • Lingle SE, Wiegand CL (1997) Soil salinity and sugarcane juice quality. Crop Res 54:259–268. doi:10.1016/S0378-4290(97)00058-0
  • Livak JK, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCt method. Methods 25:402–408. doi:10.1006/2001.1262
  • Logan BA (2005) Reactive oxygen species and photosynthesis. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants, 10th edn. Blackwell, Oxford, pp 250–267
  • Maggio A, Miyazaki S, Veronese P, Fujita T, Ibeas JI, Dasm B, Narasimhan ML, Hasegawa PM, Joly RJ, Bressan RA (2002) Does proline accumulation play an active role in stress-induced growth reduction? Plant J 31:699–703. doi:10.1046/1365-313X.2002.01389
  • Maqbool SB, Christou P (1999) Multiple traits of agronomic importance in transgenic indica rice plants: analysis of transgene integration patterns, expression levels and stability. Mol Breed 5:471–480. doi:10.1023/1009634226797
  • Mattioni C, Lacerenza NG, Troccoli A, De Leonardis AM, Di Fonzo N (1997) Water and salt stress-induced alterations in proline metabolism of Triticum durum seedlings. Physiol Plant 101:787–792. doi:10.1111/1399-3054.1997.tb01064
  • Matysik J, Alia A, Bhalub B, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82:525–532
  • Miyazawa M, Pavan MA, Bloch MFM (1992) Chemical analysis of plant tissue, vol 74. IAPAR, Londrina, pp 7–11
  • Moghaieb REA, Tanaka N, Saneoka H, Murooka Y, Ono H, Morikawa H, Nakamura A, Nguyen NT, Suwa R, Fujita K (2006) Characterization of salt tolerance in ectoine-transformed tobacco plants (Nicotiana tabaccum): photosynthesis, osmotic adjustment, and nitrogen partitioning. Plant Cell Environ 29:173–182. doi:10.1111/1365-3040.2005.01410
  • Molinari HBC, Marur CJ, Bespalhok JCF, Kobayashi AK, Pileggi M, Leite-Junior RP, Pereira LFP, Vieira LGE (2004) Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. x Poncirus trifoliata L. Raf.) overproducing proline. Plant Sci 167:1375–1381. doi:10.1016/2004.07.007
  • Molinari HBC, Marur CJ, Daros E, Campos MKF, Carvalho JFRP, Bespalhok JCF, Pereira LFP, Vieira LGE (2007) Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiol Plant 130:218–229. doi:10.1111/1399-3054.2007.00909
  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. doi:10.1146/59.032607.092911
  • Newton A, McBeath C (1996) The impact of desiccation on chlorophyll fluorescence in detached leaves of six tropical tree species. Photosynthesis 32(4):491–501
  • Palaniswamy N, Moshi MJ (1973) Studies on saline irrigation waters. II. Influence on soil properties. Madras Agric J 60:805–809
  • Papini-Terzi FS, Rocha FR, Vencio RZN, Oliveira KC, Felix JM, Vicentini R, Rocha CS, Simoes ACQ, Ulian EC, di Mauro SMZ, Silva AM, Pereira CAB, Menossi M, Souza GM (2005) Transcription profiling of signal transduction-related genes in sugarcane tissues. DNA Res 12:27–38. doi:10.1093/12.1.27
  • Parvanova D, Ivanov S, Konstantinova T, Karanov E, Atanassov A, Tsvetkov T, Alexieva V, Djilianov D (2004) Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress. Plant Physiol Biochem 42:57–63. doi:10.1016/2003.10.007
  • Patade VY, Suprasanna P, Bapat VA (2008) Effects of salt stress in relation to osmotic adjustment on sugarcane (Saccharum officinarum L.) callus cultures. Plant Growth Regul 55:169–173. doi:10.1007/s10725-008-9270
  • Plaut Z, Meinzer FC, Federman E (2000) Leaf development, transpiration and ion uptake and distribution in sugarcane cultivars grown under salinity. Plant Soil 218:59–69. doi:10.1023/1014996229436
  • Prochazkova D, Sairam RK, Srivastava GC, Singh DV (2001) Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci 161:765–771
  • Rai M, He C, Wu R (2009) Comparative functional analysis of three abiotic stress inducible promoters in transgenic rice. Transgenic Res 18:787–799. doi:10.1007/s11248-009-9263-2
  • Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66. doi:10.1016/S0304-3940(02)01423-4
  • Rasheed R, Wahid A, Farooq M, Hussain I, Basra SMA (2011) Role of proline and glycinebetaine pretreatments in improving heat tolerance of sprouting sugarcane (Saccharum sp.) buds. Plant Growth Regul 65:35–45. doi:10.1007/s10725-011-9572-3
  • Rozeff N (1995) Sugarcane and Salinity–a review paper. Sugarcane 5:8–19
  • Shen Q, Ho THD (1995) Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent response complexes each containing a G-box and a novel cis-acting element. Plant Cell 7:295–307. doi:10.1105/7.3.295
  • Shrivastava AK, Singh K, Ghosha AK, Darash R, Rai RK, Shunkla SP, Singh K (1989) Uptake and partitioning of sodium and chloride ions in sugarcane. Sugarcane 4:3–6
  • Silva MA, Jifon JL, da Silva JAG, Sharma V (2007) Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Braz J Plant Physiol 19(3):193–201. doi:10.1590/S1677-04202007000300003
  • Su J, Wu R (2004) Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci 166:941–948. doi:10.1016/2003.12.004
  • Su J, Shen Q, Ho T-HD, Wu R (1998) Dehydration-stress-regulated transgene expression in stably transformed rice plants. Plant Physiol 117:913–922. doi:10.1104/117.3.913
  • Su J, Hirji R, Zhang L, He C, Selvaraj G, Wu R (2006) Evaluation of the stress-inducible production of choline oxidase in transgenic rice as a strategy for producing the stress-protectant glycine betaine. J Exp Bot 57(5):1129–1135. doi:10.1093/133
  • Taiz L, Zeiger E (2010) Plant physiology. Artmed, Porto Alegre Thomas JR, Salinas FG, Oerther GF (1981) Use of saline water for supplemental irrigation of sugarcane. J Agron 73:1011–1017
  • Vendruscolo ECG, Schuster I, Pileggi M, Scapim CA, Molinari HBC, Marur CJ, Vieira LGE (2007) Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol 164(10):1367–1376. doi:10.1016/2007.05.001
  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759. doi:10.1007/s00726-008-0061-6
  • Wahid A, Ghazanfar A (2006) Possible involvement of some secondary metabolites in salt tolerance of sugarcane. J Plant Physiol 163:723–730. doi:10.1016/005.07.007
  • Wahid A, Sabir H, Farooq M, Ghazanfar A, Rasheed R (2009) Role of nodal bud and sprout tissue nutrients in sprout establishment, growth and salt tolerance of sugarcane. Crop Pasteur Sci 60:453–462. doi:10.1071/08231
  • Zhang CS, Lu Q, Verma DPS (1995) Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase, a bifunctional enzyme catalysing the first two steps of proline biosynthesis in plants. J Biol Chem 270:20491–20496. doi:10.1074/270.35.20491
  • Zhu B, Su J, Chang MC, Verma DPS, Fan YL, Wu R (1998) Overexpression of a Δ1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water and salt-stress in transgenic rice. Plant Sci 139:41–48. doi:10.1016/S0168-9452(98)00175-7
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-6b005782-ec68-4f35-b656-6f64819d8f3d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.