Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
The climate in Mediterranean ecosystems is characterised by aestival hot temperatures and water shortages which may affect the behaviour of bats living in these environments. We evaluated the influence of habitat type, habitat structure, and water availability on the foraging behaviour of the Mehely's horseshoe bats (Rhinolophus mehelyi) using classification and regression tree (CART) analysis. Twenty-five individuals were successively radio-tracked during May and June in two colonies (Marias and Aurora) of south-western Spain. Twelve females were tracked in Marias and 13 males in Aurora. Both localities differed in the availability of habitat types: in Marias savannah-like oak woodland dominated the landscape (81% of the study area), whereas in Aurora pasture were dominant (64% of the area). Rhinolophus mehelyi always foraged in woodland; preferentially in cluttered spaces, but also in less-cluttered/more-open ones, while open spaces were completely avoided. Bats foraged close to water bodies, preferentially at distances below 500 m, where they may readily have access to drinking water or may encounter higher insect abundances. The similarity between sexes on the preferences of habitat structure and distance to water suggest that the disparity in the habitat types used by males in Aurora and females in Marias may be due to local availability. Riparian forest is an important habitat for foraging and commuting, and should be scrupulously protected. Conservation strategies should also include the protection of woodland of diverse structure and linear landscape elements. We recommend the creation of water bodies in woodlands to enhance the suitability of foraging sites that might be underused.
Słowa kluczowe
Twórcy
autor
- Department of Zoology and Animal Cell Biology, University of the Basque Country. P.O. Box 644, E-48080 Bilbo, The Basque Country
autor
- Department of Applied Mathematics, Statistics and Operational Research, University of the Basque Country, P.O. Box 644, E-48080 Bilbo, The Basque Country
autor
- Department of Zoology and Animal Cell Biology, University of the Basque Country. P.O. Box 644, E-48080 Bilbo, The Basque Country
autor
- Department of Zoology and Animal Cell Biology, University of the Basque Country. P.O. Box 644, E-48080 Bilbo, The Basque Country
autor
- Department of Zoology and Animal Cell Biology, University of the Basque Country. P.O. Box 644, E-48080 Bilbo, The Basque Country
autor
- Department of Zoology and Animal Cell Biology, University of the Basque Country. P.O. Box 644, E-48080 Bilbo, The Basque Country
Bibliografia
- 1. R. A. Adams , and M. A. Hayes . 2008. Water availability and successful lactation by bats as related to climate change in arid regions of western North America. Journal of Animal Ecology, 77: 1115–1121. Google Scholar
- 2. J. Aihartza , I. Garin , U. Goiti , J. Zabala , and I. Zuberogoitla . 2003. Spring habitat selection by the Mediterranean horseshoe bat (Rhinolophus euryale) in the Urdaibai Biosphere Reserve (Basque Country). Mammalia, 67: 25–32. Google Scholar
- 3. H. D. J. N. Aldridge , and R. M. Brigham . 1988. Load carrying and manoeuvrability in an insectivorous bat: a test of the 5% ‘rule’ of radio-telemetry. Journal of Mammalogy, 69: 379–382. Google Scholar
- 4. H. D. J. N. Aldrldge , and I. L. Rautenbach . 1987. Morphology, echolocation and resource partitioning in insectivorous bats. Journal of Animal Ecology, 56: 763–778. Google Scholar
- 5. C. Alonso , and C. M. Herrera . 2000. Seasonal variation in leaf characteristics and food selection by larval noctuids on an evergreen Mediterranean shrub. Acta Oecologica, 21: 257–265. Google Scholar
- 6. R. M. R. Barclay 1991. Population structure of temperate zone insectivorous bats in relation to foraging behaviour and energy demand. Journal of Animal Ecology, 60: 165–178. Google Scholar
- 7. J. Blondel 2006. The ‘design’ of Mediterranean landscapes: a millennial story of human and ecological systems during the historic period. Human Ecology, 34: 713–729. Google Scholar
- 8. F. Bontadina , H. Schokleld , and B. Naef-Daenzer . 2002. Radio-tracking reveals that lesser horseshoe bats (Rhinolophus hipposideros) forage in woodlands. Journal of Zoology (London), 258: 281–290. Google Scholar
- 9. A. P. Bradley 1997. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30: 1145–1159. Google Scholar
- 10. L. Breiman , J. Friedman , R. Olshen , and C. Stone . 1984. Classification and regression trees. Wadsworth International Group, Belmont, 368 pp. Google Scholar
- 11. G. Csorba , P. Ujhelyi , and N. Thomas . 2003. Horseshoe bats of the World (Chiroptera: Rhinolophidae). Alana Books, Shropshire, 184 pp. Google Scholar
- 12. C. M. Daw , D. Russo , and M. B. Fenton . 2007. Use of native woodlands and traditional olive groves by foraging bats on a Mediterranean island: consequences for conservation. Journal of Zoology (London), 273: 397–405. Google Scholar
- 13. L De Jong , and I. Ahlén . 1991. Factors affecting the distribution pattern of bats in Uppland, central Sweden. Holarctic Ecology, 14: 92–96. Google Scholar
- 14. C. Dietz , I. Dietz , and B. M. Siemers . 2006. Wing measurement variation in the five European horseshoe bat species (Chiroptera: Rhinolophidae). Journal of Mammalogy, 87: 152–171. Google Scholar
- 15. P. L. Duvergé , and G. Jones . 1994. Greater horseshoe bats activity, foraging behaviour and habitat use. British Wildlife, 6: 69–77. Google Scholar
- 16. D. Fukui , M. Murakami , S. Nakano , and T. Aoi . 2006. Effect of emergent aquatic insects on bat foraging in a riparian forest. Journal of Animal Ecology, 75: 1252–1258. Google Scholar
- 17. U. Goiti , J. Aihartza , I. Garin , and J. Zabala . 2003. Influence of habitat on the foraging behaviour of the Mediterranean horseshoe bat, Rhinolophus euryale. Acta Chiropterologica, 5: 75–84. Google Scholar
- 18. U. Goiti , I. Garin , D. Almenar , E. Salsamendi , and J. Aihartza . 2008. Foraging by Mediterranean horseshoe bats (Rhinolophus euryale) in relation to prey distribution and edge habitat. Journal of Mammalogy, 89: 493–502. Google Scholar
- 19. S. Greif , and B. M. Siemers . 2010. Innate recognition of water bodies in echolocating bats. Nature Communications, 1: 1–6. Google Scholar
- 20. S. D. Grindal , and R. M. Brigham . 1998. Short-term effects of small-scale habitat disturbance on activity by insectivorous bats. Journal of Wildlife Management, 62: 996–1003. Google Scholar
- 21. E. M. Hagen , and J. L. Sabo . 2011. Alandscape perspective on bat foraging ecology along rivers: does channel confinement and insect availability influence the response of bat to aquatic resource in riverine landscapes. Eocologia, 166: 751–760. Google Scholar
- 22. J. Hillen. , T. Kaster , J. Pahle , A. Keifer , O. Elle , E. M. Griebeler , and M. Veith . 2011. Sex-specific habitat selection in an edge habitat specialist, the western barbastelle bat. Annales Zoologici Fennici, 48: 180–190. Google Scholar
- 23. T. E. Huxman , M. D. Smith , P. A. Fay , A. K. Knapp , M. R. Shaw , M. E. Loik , S. D. Smith , D. T. Tissue , J. C. Zak , J. F. Weltzin , et al. 2004. Convergence across biomes to a common rain-use efficiency. Nature, 429: 651–654. Google Scholar
- 24. R. Joffre , and S. Rambal . 1993. How tree cover influences the water balance of Mediterranean rangelands. Ecology, 74: 570–582. Google Scholar
- 25. J. Kush , C. Weber , S. Idelberger , and T. Koob . 2004. Foraging habitat preferences of bats in relation to food supply and spatial vegetation structures in a western European low mountain range forest. Folia Zoologica, 53: 113–128. Google Scholar
- 26. T. Lewis 1969. The distribution of flying insects near a low hedgerow. Journal of Applied Ecology, 6: 443–452. Google Scholar
- 27. K. E. McCluney , and J. L. Sabo . 2009. Water availability directly determines per capita consumption at two trophic levels. Ecology, 90: 1463–1469. Google Scholar
- 28. U. M. Norberg , and J. M. V. Rayner . 1987. Ecological morphology and flight in bat (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Transactions of the Royal Society of London, 316B: 335–427. Google Scholar
- 29. M. C. Peel , B. L. Fmlayson , and T. A. McMahon . 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11: 1633–1644. Google Scholar
- 30. P. A. Racey , and A. C. Entwistle . 2003. Conservation ecology of bats. Pp. 680–743, in Bat ecology ( T. H. Kunz and M. B. Fenton , eds.). University of Chicago Press, Chicago, 798 pp. Google Scholar
- 31. A. Rainho 2007. Summer foraging habitats of bats in a Mediterranean region of the Iberian Peninsula. Acta Chiropterologica, 9: 171–181. Google Scholar
- 32. A. Rainho , and J. M. Palmeirim . 2011 The importance of distance to resources in the spatial modelling of bat foraging habitat. PLoS ONE 6: e19227. doi: 10.1371/journal.pone.0019227. Google Scholar
- 33. D. Russo and G. Jones . 2003. Use of foraging habitats by bats in a Mediterranean area determined by acoustic surveys: conservation implications. Ecography, 26: 197–209. Google Scholar
- 34. D. Russo , G. Jones , and A. Mgliozzi . 2002. Habitat selection by the Mediterranean horseshoe bat, Rhinolophus euryale (Chiroptera: Rhinolophidae) in a rural area of southern Italy and implications for conservation. Biological Conservation, 107: 71–81. Google Scholar
- 35. D. Russo , D. Almenar , J. Aihartza , U. Goiti , E. Salsamendi , and I. Garin . 2005. Habitat selection in sympatric Rhinolophus mehelyi and R. euryale (Mammalia: Chiroptera). Journal of Zoology (London), 266: 327–332. Google Scholar
- 36. D. Russo , L. Cistrone , A. P. Garonna , and G. Jones . 2010. Reconsidering the importance of harvested forests for the conservation of tree-dwelling bats. Biodiversity and Conservation, 9: 2501–2515. Google Scholar
- 37. I. Salicini , C. Ibañez , and J. Juste . 2011. Multilocus phylogeny and species delimitation within the Natterer's bat species complex in the Western Paleartic. Molecular Phylogenetics and Evolution, 61: 888–898. Google Scholar
- 38. E. Salsamendi , J. Aihartza , U. Goiti , D. Almenar , and I. Garin . 2005. Echolocation calls and morphology in the Mehely's (Rhinolophus mehelyi) and the Mediterranean (R. euryale) horseshoe bats: implications for resource partitioning. Hystrix, 16: 149–158. Google Scholar
- 39. E. Salsamendi , I. Garin , D. Almenar , U. Goiti , M. Napal , and J. Aihartza . 2008. Diet and prey selection in Mehely's horseshoe bat Rhinolophus mehelyi (Chiroptera, Rhinolophidae) in the south-western Iberian Peninsula. Acta Chiropterologica, 10: 279–286. Google Scholar
- 40. H.-U. Schnitzler , and E. K. V. Kalko . 2001. Echolocation by insect-eating bats. Bioscience, 51: 557–569. Google Scholar
- 41. H.-U. Schnitzler , C. F. Moss , and A. Denzinger . 2003. From spatial orientation to food acquisition in echolocating bats. Trends in Ecology and Evolution, 18: 386–394. Google Scholar
- 42. SOCIETY FOR THE STUDY OF ANIMAL BEHAVIOUR. 2006. Guidelines for the treatment of animals in behavioural research and teaching. Animal Behaviour, 71: 245–253. Google Scholar
- 43. C. Stefanescu , J. Peñuelas , and J. Filella . 2003. Effects of climatic change on the phenology of butterflies in the northwest Mediterranean Basin. Global Change Biology, 9: 1494–1506. Google Scholar
- 44. D. W. Stephens , and J. R Krebs . 1986. Foraging theory. Princeton University Press, Princeton, 262 pp. Google Scholar
- 45. E. W. Steyerberg 2009. Clinical prediction models: a practical approach to development, validating, and updating series. Springer, New York, 528 pp. Google Scholar
- 46. H. J. Temple , and A. Terry . 2007. The status and distribution of European mammals. ICCN-SCC, Office for Official Publications of the European Communities, Luxemburg, viii + 48 pp. Google Scholar
- 47. W. N. Venables , and B. D. Ripley . 1994. Modern applied statistics with S-Plus. Springer-Verlag, New York, 501 pp. Google Scholar
- 48. R. D. Warren , D. A. Waters , J. D. Altringham , and D. J. Bullock . 2000. The distribution of Daubenton's bats (Myotis daubentonii) and pipistrelle bats (Pipistrellus pipistrellus) (Vespertilionidae) in relation to small-scale variation in riverine habitat. Biological Conservation, 92: 85–91. Google Scholar
- 49. A. D. Watt 1986. The performance of the pine beauty moths on water-stressed lodgepole pine plants: a laboratory experiment. Oecologia, 70: 578–579. Google Scholar
- 50. P. I. Webb , J. R. Speakman , and P. A. Racey . 1995. Evaporative water loss in two sympatric species of vespertilionid bat, Plecotus auritus and Myotis daubentonii: relation to foraging mode and implications for roost site selection. Journal of Zoology (London), 235: 269–278. Google Scholar
- 51. E. J. Wenninger , and R. S. Inouye . 2008. Insect community response to plant diversity and productivity in a sagebrush-steppe ecosystem. Journal of Arid Environments, 72: 24–33. Google Scholar
- 52. G. C. White , and R. A. Garrot . 1990. Analysis of wildlife radio-tracking data. Academic Press, London, 383 pp. Google Scholar
- 53. L. P. Wickramsinghe , S. Harris , G. Jones , and J. N. Vaughan . 2004. Abundance and species richness of nocturnal insects on organic and conventional farms: effects of agricultural intensification on bat foraging. Conservation Biology, 18: 1283–1292. Google Scholar
- 54. J. L. Yela , and C. M. Herrera . 1993. Seasonality and life cycles of woody plant-feeding noctuid moths (Lepidoptera: Noctuidae) in Mediterranean habitats. Ecological Entomology, 18: 259–269. Google Scholar
- 55. A. Zahn , J. Holzhaider , E. Kriner , A. Maler , and A. Kayikcioglu . 2008. Foraging activity of Rhinolophus hipposideros on the Island of Herrenchiemsee, Upper Bavaria. Mammalian Biology, 73: 222–229. Google Scholar
Uwagi
PL
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-6a408035-c542-4156-ad81-0dc2a21d4af1