Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 18 | 1 |
Tytuł artykułu

Activity patterns and use of night roosts by lesser horseshoe bats Rhinolophus hipposideros (Borkhausen, 1797)

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Close approach radio-tracking was used to investigate time and space use for both sexes of Rhinolophus hipposideros. Fifteen bats (nine males and six females, from three roosts) were radio-tracked (fi01_223.gif = 6.7 nights) within and around the National Trust Sherborne Park Estate, Gloucestershire (UK), between June and October 2003, at least seven of which (six males and one female) relocated to a different day roost after capture. The mean number of activity bouts per night was 3.5, each lasting for an average of 148 minutes. The mean distance travelled between fixes during each bout of activity was 3.8 km, and per night was 14.2 km. An average of 3.3 (SE = 1.8, range = 1–7, n = 12) night roosts were used per bat. Those individuals which continued roosting within the estate (n = 13) occupied a group foraging range covering approximately 1,175 ha with a 6.3 km range span (100% minimum convex polygon). The corresponding areas using the 95% Kernel isopleth and 95% Dirichlet tessellation enclosed approximately 539 ha and 1,553 ha, respectively. The maximum distance a bat was tracked from the roost of capture was 4.6 km, although the mean (n = 15) was much lower (2.2 km). A mean of 42% of the radio-tracking fixes from bats with at least one whole night of data were associated with night roosting, and of those, 56% were from the boiler room of a residential property within Sherborne village (used by 12 of the 15 bats). Therefore a range of suitable night roosts (i.e. sheltered locations adjacent to foraging areas) should be available throughout the foraging range (a minimum of 3 km from the roost) of a R. hipposideros colony. Night roosts on the edge of the home range, and warm night roosts are especially important.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
18
Numer
1
Opis fizyczny
p.223-237,fig.,ref.
Twórcy
autor
  • Arcadis, The Mill, Brimscombe Port, Stroud, Gloucestershire, GL5 2QG, United Kingdom
  • University of Bristol, School of Biological Sciences, Woodland Road, Bristol, BS8 1UG, United Kingdom
  • Arcadis, The Mill, Brimscombe Port, Stroud, Gloucestershire, GL5 2QG, United Kingdom
autor
  • Arcadis, The Mill, Brimscombe Port, Stroud, Gloucestershire, GL5 2QG, United Kingdom
autor
  • GS Ecology, 119 Highgrove Street, Reading, Berks, RG1 5EJ, United Kingdom
autor
  • Collins Environmental Consultancy, Epsilom Dome, Cleve Mill Business Park, Newent, Gloucestershire, GL18 1EP, United Kingdom
autor
  • Jacobs, Churchill House, Churchill Way, Cardiff, Wales, CF10 2HH, United Kingdom
autor
  • Peter Brett Associates, 10 Queen Square, Bristol, BS1 4NT, United Kingdom
Bibliografia
  • 1. Agosta, S. J. , K. M. Kuhn , and D. Morton . 2002. Bat night roost at an abandoned mine in western Maryland. Canadian Field Naturalist, 116: 389–392. Google Scholar
  • 2. Alberdi, A. , J. Aihartza , O. Aizpurua , E. Salsamendi , M. Brig Ham , and I. Garin . 2015. Living above the treeline: roosting ecology of the alpine bat Plecotus macrobullaris. European Journal of Wildlife Research, 61: 17–25. Google Scholar
  • 3. Aldridge, H. D. J. N. , and R. M. Brigham . 1988. Load carrying and maneuverability in an insectivorous bat: a test of the 5% ‘rule' of radio-telemetry. Journal of Mammalogy, 69: 379–382. Google Scholar
  • 4. Anthony, F. I. P. , M. H. Stack , and T. H. Kunz . 1981. Night roosting and the nocturnal time budget of the little brown bat, Myotis lucifugus: effects of reproductive status, prey den sity and environmental conditions. Oecologia, 51: 151–156. Google Scholar
  • 5. August, T. A. , M. A. Nunn , A. G. Fensome , D. M. Linton , and F. Mathews . 2014. Sympatric woodland Myotis bats form tight-knit social groups with exclusive roost home ranges. PLoS ONE, 9: e112225. Google Scholar
  • 6. Bartonička, T. , A. Beilik , and Z. Řehak . 2008. Roost switching and activity patterns in the soprano pipistrelle, Pipi strellus pygmaeus, during lactation. Annales Zoologici Fennici, 45: 503–512. Google Scholar
  • 7. Betts, B. R. 1996. Roosting behaviour of silver-haired bats (La sionycteris noctivagans) and big brown bats (Eptesicus fuscus) in northeast Oregon. Pp. 55–61, in Bats and Forests Symposium, October 19–21, 1995, Victoria, British Columbia, Canada ( R. M. R. Barclay and R. M. Brigham , eds.). British Columbia Ministry of Forests, Victoria, xiv + 292 pp. Google Scholar
  • 8. Billington, G. , and M. D. Rawlinson . 2006. A review of horse shoe bat flight lines and foraging areas. Countryside Council for Wales Science Report, 755: 1–23. Google Scholar
  • 9. Bontadina, F. , H. Schofield , and B. Naef-Daenzer . 2002. Radio tracking reveals that lesser horseshoe bats (Rhinolophus hipposideros) forage in woodland. Journal of Zoology (London), 258: 281–290. Google Scholar
  • 10. Bontadina, F. , S. F. Schmied , A. Beck , and R. Arlettaz . 2008. Changes in prey abundance unlikely to explain the demography of a critically endangered Central European bat. Journal of Applied Biology, 45: 641–648. Google Scholar
  • 11. Catto, C. M. C. , P. A. Racey , and P. J. Stephenson . 1995. Activ ity patterns of the serotine bat (Eptesicus serotinus) at a roost in southern England. Journal of Zoology (London), 235: 635–644. Google Scholar
  • 12. Cresswell, W. J. , and G. C. Smith . 1992. The effects of temporally autocorrelated data on methods of home range analysis. Pp. 272–284, in Wildlife telemetry: remote monitoring and tracking of animals ( I. G. Priede and S. M. Swift , eds.). Ellis Horwood, Chichester, xii + 708, pp. Google Scholar
  • 13. Davidson-Watts, I. , and G. Jones . 2005. Differences in foraging behaviour between Pipistrellus pipistrellus (Schreber, 1774) and Pipistrellus pygmaeus (Leach, 1825). Journal of Zoology (London), 268: 55–62. Google Scholar
  • 14. De Jong, J. 1994. Habitat use, home-range and activity pattern of the northern bat, Eptesicus nilssoni, in a hemiboreal coniferous forest. Mammalia, 58: 535–548. Google Scholar
  • 15. De Jong, J. , and I. Ahlen . 1991. Factors affecting the distribution pattern of bats in Uppland, central Sweden. Holarctic Ecology, 14: 92–96 Google Scholar
  • 16. Dietz, M. , and E. K. V. Kalko . 2007. Reproduction affects flight activity in female and male Daubenton's bats, Myotis daubentoni. Canadian Journal of Zoology, 85: 653–664. Google Scholar
  • 17. Duverge, P. L. 1996. Foraging activity, habitat use, development of juveniles, and diet of the greater horseshoe bat (Rhi no lophus ferrumequinum — Schreber, 1774) in South-West England. Ph.D. Thesis, University of Bristol, Bristol, UK, 310 pp. Google Scholar
  • 18. Encarnacao, J. A. , U. Kiierdorf , D. Holweg , U. Jasnoch , and V. Wolters . 2005. Sex-related differences in roost-site selection by Daubenton's bats Myotis daubentonii during the nursery period. Mammal Review, 35: 285–294. Google Scholar
  • 19. Entwistle, A. C. , and S. M. Swift . 2008. Brown long-eared bat. Pp. 364–370, in The handbook of British mammals, 4th edition ( S. Harris and D. W. Yalden , eds.). The Mammal Society, Southampton, xiv + 799 pp. Google Scholar
  • 20. Entwistle, A. C. , P. A. Racey , and J. R. Speakman . 1996. Habitat exploitation by a gleaning bat, Plecotus auritus. Philosophical Transactions of the Royal Society, 351B: 921–931. Google Scholar
  • 21. Erkert, H. G. 1982. Ecological aspects of bat activity rhythms. Pp. 201–242, in Ecology of bats ( T. H. Kunz , ed.). Plenum Press, New York, 425 pp. Google Scholar
  • 22. Funakoshi, K. , and F. Maeda . 2003. Foraging activity and nightroost usage in the Japanese greater horseshoe bat, Rhino lophus ferrumequinum nippon. Mammal Study, 28(1): 1–10. Google Scholar
  • 23. Gaisler, J. 1963. Nocturnal activity in the lesser horseshoe bat, Rhinolophus hipposideros (Bechstein). Zoologicke Listy, 12: 223–230. Google Scholar
  • 24. Goiti, U. , J. Aihartza , D. Almenar , E. Salsamendi , and I. Garin . 2006. Seasonal foraging by Rhinolophus euryale (Rhi nolophidae) in an Atlantic rural landscape in northern Iberian Peninsula. Acta Chiropterologica, 8: 141–155. Google Scholar
  • 25. Harris, S. , W. J. Cresswell , P. J. Forde , W. J. Trewhella , and S. Wray . 1990. Home range analysis using radio tracking data: a review of problems and techniques as applied to the study of mammals. Mammal Review, 20: 97–123. Google Scholar
  • 26. JNCC [Joint Nature Conservation Committee]. 2003. Handbook for Phase 1 habitat survey — a technique for environmental audit — revised reprint. JNCC, Peter borough, 78 pp. Google Scholar
  • 27. Jones, G. , and J. M. V. Rayner . 1989. Foraging behaviour and echolocation of wild horseshoe bats Rhinolophus ferrumequinum and Rhinolophus hipposideros (Chiroptera, Rhino lophidae). Behavioural Ecology and Sociobiology, 25: 183–191. Google Scholar
  • 28. Jones, G. , and J. Rydell . 1994. Foraging strategy and preda tion risk as factors influencing emergence time in echolocating bats. Philosophical Transactions of the Royal Society, 346B: 445–455. Google Scholar
  • 29. Jones, G. , P. L. Duverge , and R. D. Ransome . 1995. Conserva tion biology of an endangered species: field studies of greater horseshoe bats. In Ecology, evolution and behaviour of bats ( P. A. Racey and S. M. Swift , eds.). Sym posium of the Zoological Society of London, 67: 309–324. Google Scholar
  • 30. Kapfer, G. , T. Rigot , L. Holsbeek , and S. Aron . 2007. Roost and hunting site fidelity of female and juvenile Daubenton's bat Myotis daubentonii (Kuhl, 1817) (Chiroptera: Vespertilionidae). Mammalian Biology, 73: 267–275. Google Scholar
  • 31. Kerth, G. , M. Wagner , K. Weissmann , and B. Kőnig . 2002. Habitat und Quartiernutzung bei der Bechsteinfledermaus: Hinweise fur den Artenschutz. Schriftenreihe fur Landschaft s pflege und Naturschutz, 71: 99–108. Google Scholar
  • 32. Knight, T. 2006. The use of landscape features and habitats by the lesser horseshoe bat (Rhinolophus hipposideros). Ph.D. Thesis, University of Bristol, Bristol, UK, 193 pp. Google Scholar
  • 33. Knight, T. , and G. Jones . 2009. Importance of night roosts for bat conservation: roosting behaviour of the lesser horseshoe bat Rhinolophus hipposideros. Endangered Species Research, 8: 79–86. Google Scholar
  • 34. Lee, Y.-F. , Y.-M. Kuo , W.-C. Chu , Y.-H. Lin , H.-Y. Chang , and W.-M. Chen . 2012. Ecomorphology, differentiated habitat use, and nocturnal activities of Rhinolophus and Hipposideros species in East Asian tropical forests. Zoology, 115: 22–29. Google Scholar
  • 35. Lewis, S. E. 1995. Roost fidelity of bats: a review. Journal of Mammalogy, 76: 481–496. Google Scholar
  • 36. Lewis, T. 1967. The horizontal and vertical distribution of flying insects near artificial windbreaks. Annals of Applied Ecology, 60: 23–31. Google Scholar
  • 37. Lewis, T. 1969. The distribution of flying insects near a low hedgerow. Journal of Applied Ecology, 65: 213–220. Google Scholar
  • 38. Lewis, T. , and J. W. Stephenson . 1966. Permeability of artificial windbreaks and the distribution of flying insects. Annals of Applied Ecology, 58: 355–363. Google Scholar
  • 39. Maier, C. 1992. Activity patterns of pipistrelle bats (Pipistrellus pipistrellus) in Oxfordshire. Journal of Zoology (London), 228: 69–80. Google Scholar
  • 40. Maltagliati, G. , P. Agnelli , and S. Cannicci . 2013. Where and at what time? Multiple roost use and emergence time in greater horseshoe bats (Rhinolophus ferrumequinum). Acta Chiropterologica, 15: 113–120. Google Scholar
  • 41. McAney, C. M. , and J. S. Fairley , 1988. Activity patterns of the lesser horseshoe bat Rhinolophus hipposideros at summer roosts. Journal of Zoology (London), 216: 352–338. Google Scholar
  • 42. Mohr, C. O. 1947. Table of equivalent populations of north Amer ican small mammals. American Midland Naturalist, 37: 223–249. Google Scholar
  • 43. Nicholls, B. , and P. A. Racey , 2006. Contrasting home-range size and spatial partitioning in cryptic and sympatric pipistrelle bats. Behavioural Ecology and Sociobiology, 61: 131–142. Google Scholar
  • 44. Norberg, U. M. , and J. M. V. Rayner . 1987. Ecological morphology and flight in bats (Mammalia: Chiroptera): wing adaptations, flight performance, foraging strategy, and echolocation. Philosophical Transactions of the Royal Society, 316B: 335–427. Google Scholar
  • 45. O'Donnell, C. F. J. , and J. A. Sedgeley . 1999. Use of roosts by the long-tailed bat, Chalinolobus tuberculatus, in tem per ate rainforest in New Zealand. Journal of Mammalogy, 80: 913–923. Google Scholar
  • 46. Pavey, C. R. , and C. J. Burwell . 2004. Foraging ecology of the horseshoe bat, Rhinolophus megaphyllus (Rhinolophidae), in Eastern Australia. Wildlife Research, 31: 403–413. Google Scholar
  • 47. Peng, R. K. 1991. The influence of microclimate on the spatial distribution of flying insects. Ph.D. Thesis, University of Leeds, Leeds, UK, 196 pp. Google Scholar
  • 48. Racey, P. A. , and S. M. Swift . 1985. Feeding ecology of Pipistrel lus pipistrellus (Chiroptera: Vespertilionidae) during pregnancy and lactation. 1. Foraging behaviour. Journal of Animal Ecology, 54: 205–215. Google Scholar
  • 49. Rainho, A. , and J. M. Palmeirim . 2011. The importance of distance to resources in the spatial modelling of bat foraging habitat. PLoS ONE, 6: e19227. Google Scholar
  • 50. Ramovš, V. , S. Zidar , and M. Zagmajster . 2010. Emergence and flight routes of the lesser horseshoe bats Rhinolophus hipposideros (Bechstein, 1800) from a church at Lju bljansko Barje, Central Slovenia. Natura Sloveniae, 12: 35–53. Google Scholar
  • 51. Ransome, R. D. 1991. Lesser horseshoe bat. Pp. 95–97, in The handbook of British mammals, 3rd edition ( G. Corbet and S. Harris , eds.). Blackwell Scientific Publications, Oxford, xiv + 588 pp. Google Scholar
  • 52. Ransome, R. D. 1996. The management of feeding areas for greater horseshoe bats. English Nature Research Report, 174: 1–74. Google Scholar
  • 53. Ransome, R. D. 1997. The management of greater horseshoe bat feeding areas to enhance population levels. English Nature Research Report, 241: 1–62. Google Scholar
  • 54. Reiter, G. , E. Polzer , H. Mixanig , F. Bontadina , and U. Huttmeir . 2013. Impact of landscape fragmentation on a specialised woodland bat, Rhinolophus hipposideros. Mammalian Biology, 78: 283–289. Google Scholar
  • 55. Richarz, K. 1988. Report of the successful transplantation of a nursery colony of the lesser horseshoe bat (Rhinolophus hipposideros) and remarks about the actual status of this species in Bavaria. Pp. 659–670, in European bat research 1987 ( V. Hanak , I. Horaček , and J. Gaisler , eds.). Charles University Press, Praha, 718 pp. Google Scholar
  • 56. Rossiter, S. J. , G. Jones , R. D. Ransome , and E. M. Barratt . 2002. Relatedness structure and kin-based foraging in the greater horseshoe bat (Rhinolophus ferrumequinum). Behav ioural Ecology and Sociobiology, 51: 510–518. Google Scholar
  • 57. Ruedi, M. 1993. Variations in night roost behaviour of Myotis daubentonii during reproduction — influence of precipitations and temperature. Mammalia, 57: 307–315. Google Scholar
  • 58. Russo, D. , L. Cistrone , and G. Jones . 2005. Spatial and temporal patterns of roost use by tree-dwelling barbastelle bats, Barbastella barbastellus. Ecography, 28: 769–776. Google Scholar
  • 59. Russo, D. , L. Cistrone , and G. Jones . 2007. Emergence time in forest bats: the influence of canopy closure. Acta Oecologica, 31: 119–126. Google Scholar
  • 60. Rydell, J. 1989. Food habits of northern (Eptesicus nilssoni) and brown long-eared (Plecotus auritus) bats in Sweden. Hol arctic Ecology, 12: 16–20. Google Scholar
  • 61. Rydell, J. 1991. Seasonal use of illuminated areas by foraging northern bats Eptesicus nilssoni. Holarctic Ecology, 14: 203–207. Google Scholar
  • 62. Rydell, J. , A. Entwistle , and P. A. Racey . 1996. Timing of foraging flights of three species of bats in relation to insect activity and predation risk. Oikos, 76: 243–252. Google Scholar
  • 63. Safi, K. 2006. Die Zweifarbfledermaus in der Schweiz. Status und Grundlagen fur den Schutz. Haupt Verlag, Berne, 100 pp. Google Scholar
  • 64. Safi, K. , B. Konig , and G. Kerth . 2007. Sex differences in population genetics, home range size and habitat use of the parti-colored bat (Vespertilio murinus, Linnaeus 1758) in Switzerland and their consequences for conservation. Biological Conservation, 137: 28–36. Google Scholar
  • 65. Salsamendi, E. , I. Arostegui , J. Aihartza , D. Almenar , U. Goi Ti , and I. Garin . 2012. Foraging ecology in Mehely's horse shoe bats: influence of habitat structure and water avail ability. Acta Chiropterologica, 14: 121–132. Google Scholar
  • 66. Sattler, T. , F. Bontadina , A. H. Hirzel , and R. Arlettaz . 2007. Ecological niche modelling of two cryptic bat species calls for a reassessment of their conservation status. Journal of Applied Ecology, 44: 1188–1199. Google Scholar
  • 67. Schofield, H. W. 1996. The ecology and conservation biology of Rhinolophus hipposideros, the lesser horseshoe bat. Ph.D. Thesis, University of Aberdeen, Aberdeen, UK, 197 pp. Google Scholar
  • 68. Schofield, H. W. 2008. The lesser horseshoe bat conservation handbook. The Vincent Wildlife Trust, Ledbury, 78 pp. Google Scholar
  • 69. Seckerdieck, A. , B. Walther , and S. Halle . 2005. Alternative use of two different roost types by a maternity colony of the lesser horseshoe bat (Rhinolophus hipposideros). Mammal ian Biology, 70: 201–209. Google Scholar
  • 70. Shiel, C. B. , C. M. Mcaney , and J. S. Fairley . 1991. Analysis of the diet of Natterer's bat Myotis nattereri and the common long-eared bat Plecotus auritus in the west of Ireland. Jour nal of Zoology (London), 223: 299–305. Google Scholar
  • 71. Smith, P. G. , and P. A. Racey . 2005. The itinerant Natterer: physical and thermal characteristics of summer roosts of Myotis nattereri (Mammalia: Chiroptera). Journal of Zoology (London), 266: 171–180. Google Scholar
  • 72. Speakman, J. R. , and P. A. Racey . 1987. The energetics of pregnancy and lactation in the brown long-eared bat, Plecotus auritus. Pp. 367–393, in Recent advances in the study of bats ( M. B. Fenton , P. A. Racey , and J. M. V. Rayner , eds.). Cambridge University Press, Cambridge, 470 pp. Google Scholar
  • 73. Speakman, J. R. , and A. Rowland . 1999. Preparing for inactivity: how insectivorous bats deposit a fat store for hibernation. Proceedings of the Nutrition Society, 58: 123–131. Google Scholar
  • 74. Steinhauser, D. 2002. Untersuchungen zur Okologie der Mopsfledermaus, Barbastella barbastellus und der Bech steinfledermaus, Myotis bechsteinii im Suden des Landes Bran denburg. Schriftenreihe fur Landschaftspflege und Natur schutz, 71: 81–98. Google Scholar
  • 75. Stone, E. L. , G. Jones , and S. Harris . 2009. Street lighting disturbs commuting bats. Current Biology, 19: 1123–1127. Google Scholar
  • 76. Stone, E. L. , G. Jones , and S. Harris . 2012. Conserving energy at a cost to biodiversity? Impacts of LED lighting on bats. Global Change Biology, 18: 2458–2465. Google Scholar
  • 77. Swift, S. M. , and P. A. Racey . 1983. Resource partitioning in two species of vespertilionid bats (Chiroptera) occupying the same roost. Journal of Zoology (London), 200: 249–259. Google Scholar
  • 78. Taylor, L. R. 1963. Analysis of the effect of temperature on insects in flight. Journal of Animal Ecology, 32: 99–117. Google Scholar
  • 79. Tournant, P. , E. Alfonso , S. Roue , P. Giraudoux , and J. C. Foltete . 2013. Evaluating the effect of habitat connectivity on the distribution of lesser horseshoe bat maternity roosts using landscape graphs. Biological Conservation, 164: 39–49. Google Scholar
  • 80. Turner, J. R. G. , C. M. Gatehouse , and C. A. Corey . 1987. Does solar energy control organic diversity? Butterflies, moths and the British climate. Oikos, 48: 195–205. Google Scholar
  • 81. Vaughan, N. 1997. The diets of British bats (Chiroptera). Mammal Review, 27: 77–94. Google Scholar
  • 82. Voigt, C. C. , B. M. Schuller , S. Greif , and B. M. Siemers . 2010. Perch hunting in insectivorous Rhinolophus bats is related to the high energy costs of manoeuvring in flight. Journal of Comparative Physiology, 180B: 1079–1088. Google Scholar
  • 83. Vonhof, M. J. , and B. J. Betts . 2010. Nocturnal activity patterns of lactating silver-haired bats (Lasionycteris noctivagans): the influence of roost-switching behaviour. Acta Chi ropterologica, 12: 283–291. Google Scholar
  • 84. Wallin, L. 1961. Territorialism on the hunting ground of Myotis daubentonii. Saugetierkundliche Mitteilungen, 9: 156–159. Google Scholar
  • 85. Weller, T. J. , P. M. Cryan , and T. J. O'Shea . 2009. Broadening the focus of bat conservation and research in the USA for the 21st century. Endangered Species Research, 8: 129–145. Google Scholar
  • 86. Wellington, W. G. 1945a. Conditions governing the distribution of insects in the free atmosphere. 1. Atmospheric pressure, temperature and humidity. Canadian Ento mol ogist, 77: 7–15. Google Scholar
  • 87. Wellington, W. G. 1945b. Conditions governing the distribution of insects in the free atmosphere. 2. Surface and upper winds. Canadian Entomologist, 77: 21–28. Google Scholar
  • 88. White, G. C. , and R. A. Garrott . 1990. Analysis of wildlife radio-tracking data. Academic Press Ltd., New York, 383 pp. Google Scholar
  • 89. Williams, C. , L. Salter , and G. Jones . 2011. The winter diet of the lesser horseshoe bat (Rhinolophus hipposideros) in Britain and Ireland. Hystrix, Italian Journal of Mammalogy, 22: 159–166. Google Scholar
  • 90. Williams, C. A. 2001. The winter ecology of Rhinolophus hipposideros, the lesser horseshoe bat. Ph.D. Thesis, Open University, Milton Keynes, UK, xvii + 231 pp. Google Scholar
  • 91. Williams, C. B. 1940. An analysis of four years captures of insects in a light trap. Part II. The effect of weather conditions on insect activity; and the estimation and forecasting of changes in the insect population. Transactions of the Royal Entomological Society of London, 90: 227–306. Google Scholar
  • 92. Worton, B. J. 1989. Kernel methods for estimating the utilisa tion distribution in home range studies. Ecology, 70: 164–168. Google Scholar
  • 93. Wray, S. , W. J. Cresswell , and D. Rogers . 1992a. Dirichlet tesselations: a new non-parametric method of home range analysis. Pp. 247–255, in Wildlife telemetry: remote monitoring and tracking of animals ( I. G. Priede and S. M. Swift , eds.). Ellis Horwood, Chichester, xii + 708 pp. Google Scholar
  • 94. Wray, S. , W. J. Cresswell , P. C. L. White , and S. Harris . 1992b. What if anything is a core area? An analysis of the problems of describing internal range configurations. Pp. 256–271, in Wildlife telemetry: remote monitoring and tracking of animals ( I. G. Priede and S. M. Swift , eds.). Ellis Horwood, Chichester, xii + 708 pp. Google Scholar
  • 95. Zahn, A. , J. Holzhaider , E. Kriner , A. Maier , and A. Kayikcioglu . 2008. Foraging activity of Rhinolophus hipposideros on the island of Herrenchiemsee, Upper Bavaria. Mammalian Biology, 73: 222–229. Google Scholar
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.agro-68d444b0-fc0d-468f-8688-00e7b996c210
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.