Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 12 |
Tytuł artykułu

The natural alkaloid sanguinarine promotes the expression of heat shock protein genes in Arabidopsis

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Small-molecule heat shock response inducers are known to enhance heat tolerance in plants. In this paper, we report that a plant alkaloid enhances the heat tolerance of Arabidopsis. We investigated 12 commercially available alkaloids to determine whether they enhance the heat tolerance of Arabidopsis seedlings using an in vitro assay system with geldanamycin, which is a known heat shock response inducer, as a positive control. Accordingly we found that the isoquinoline alkaloid sanguinarine can enhance heat tolerance in Arabidopsis. No such effect was shown for the other 11 alkaloids. The sanguinarine treatment increased the expression of heat shock protein genes such as HSP17.6C-CI, HSP70, and HSP90.1, which were up-regulated by geldanamycin. Treatments with other isoquinoline alkaloids (berberine and papaverine), which showed few heat tolerance-enhancing effects, did not promote the expression of the heat shock protein genes. These results suggest that sanguinarine influenced the heat tolerance of Arabidopsis by enhancing the expression of heat shock protein genes.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
36
Numer
12
Opis fizyczny
p.3337-3343,fig.,ref.
Twórcy
autor
  • Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Shizuoka, 422-8529, Japan
autor
  • Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Shizuoka, 422-8529, Japan
Bibliografia
  • Ainsworth EA, Ort DR (2010) How do we improve crop production in a warming world? Plant Physiol 154:526–530
  • Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550
  • Almeida AA, Farah A, Silva DA, Nunan EA, Glória MB (2006) Antibacterial activity of coffee extracts and selected coffee chemical compounds against enterobacteria. J Agric Food Chem 54:8738–8743
  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582
  • Dat JF, Lopez-Delgado H, Foyer CH, Scott IM (1998) Parallel changes in H₂O₂ and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol 116:1351–1357
  • Godowski KC (1989) Antimicrobial action of sanguinarine. J Clin Dent 1:96–101
  • Hall AE (2001) Crop responses to environment. CRC Press LLC, Boca Raton
  • Hara M, Harazaki A, Tabata K (2013) Administration of isothiocyanates enhances heat tolerance in Arabidopsis thaliana. Plant Growth Regul 69:71–77
  • Huang B, Xu C (2008) Identification and characterization of proteins associated with plant tolerance to heat stress. J Integr Plant Biol 50:1230–1237
  • Iba K (2002) Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu Rev Plant Biol 53:225–245
  • Jones NL, Shabib S, Sherman PM (1997) Capsaicin as an inhibitor of the growth of the gastric pathogen Helicobacter pylori. FEMS Microbiol Lett 146:223–227
  • Kosina P, Walterová D, Ulrichová J, Lichnovský V, Stiborová M, Rýdlová H, Vicar J, Krecman V, Brabec MJ, Simánek V (2004) Sanguinarine and chelerythrine: assessment of safety on pigs in ninety days feeding experiment. Food Chem Toxicol 42:85–91
  • Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316
  • Mackraj I, Govender T, Gathiram P (2008) Sanguinarine. Cardiovasc Ther 26:75–83
  • Maiti M, Kumar GS (2010) Polymorphic nucleic acid binding of bioactive isoquinoline alkaloids and their role in cancer. J Nucleic Acids. doi:10.4061/2010/593408
  • Ozçelik B, Kartal M, Orhan I (2011) Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm Biol 49:396–402
  • Roberts MF, Wink M (1998) Alkaloids: biochemistry, ecology, and medicinal applications. Plenum Press, New York
  • Roe SM, Prodromou C, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1999) Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem 42:260–266
  • Ruelland E, Zachowski A (2010) How plants sense temperature. Environ Exp Bot 69:225–232
  • Saidi Y, Finka A, Chakhporanian M, Zrÿd JP, Schaefer DG, Goloubinoff P (2005) Controlled expression of recombinant proteins in Physcomitrella patens by a conditional heat-shock promoter: a tool for plant research and biotechnology. Plant Mol Biol 59:697–711
  • Saidi Y, Domini M, Choy F, Zryd JP, Schwitzguebel JP, Goloubinoff P (2007) Activation of the heat shock response in plants by chlorophenols: transgenic Physcomitrella patens as a sensitive biosensor for organic pollutants. Plant, Cell Environ 30:753–763
  • Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant, Cell Environ 25:163–171
  • Senaratna T, Touchell D, Bunn E, Dixon K (2000) Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul 30:157–161
  • Trepel J, Mollapour M, Giaccone G, Neckers L (2010) Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10:537–549
  • Vieira SL, Oyarzabal OA, Freitas DM, Berres J, Pena JEM, Torres CA, Coneglian JLB (2008) Performance of broilers fed diets supplemented with sanguinarine-like alkaloids and organic acid. J Appl Poult Res 17:128–133
  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223
  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252
  • Waters ER (2013) The evolution, function, structure, and expression of the plant sHSPs. J Exp Bot 64:391–403
  • Yamada K, Nishimura M (2008) Cytosolic heat shock protein 90 regulates heat shock transcription factor in Arabidopsis thaliana. Plant Signal Behav 3:660–662
  • Yamada K, Fukao Y, Hayashi M, Fukazawa M, Suzuki I, Nishimura M (2007) Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana. J Biol Chem 282:37794–37804
  • Yao JY, Shen JY, Li XL, Xu Y, Hao GJ, Pan XY, Wang GX, Yin WL (2010) Effect of sanguinarine from the leaves of Macleaya cordata against Ichthyophthirius multifiliis in grass carp (Ctenopharyngodon idella). Parasitol Res 107:1035–1042
  • Yoshida T, Ohama N, Nakajima J, Kidokoro S, Mizoi J, Nakashima K, Maruyama K, Kim JM, Seki M, Todaka D, Osakabe Y, Sakuma Y, Schöffl F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol Genet Genomics 286:321–332
  • Zhang L, Zhang Q, Gao Y, Pan H, Shi S, Wang Y (2014) Overexpression of heat shock protein gene PfHSP21.4 in Arabidopsis thaliana enhances heat tolerance. Acta Physiol Plant 36:1555–1564
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-678fcd9b-a053-4b23-bbf8-51e77ee4d880
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.