Warianty tytułu
Języki publikacji
Abstrakty
A single-nucleotide polymorphism (SNIP) is a variation in a single nucleotide that occurs at a certain position in the DNA. Each variant is, to some extent, present within a population (e.g. > 1%). Due to the correlations of some SNIP’s with sport performance and athletic physical capacity, various authors considered their importance in the context of professional sport. Among many SNIP’s angiotensin I converting enzyme (ACE) polymorphism is a well-studied example associated with an enhanced physiological response to aerobic exercise. Among other sport-related interesting SNIP’s following are highly documented: AMPD1 (C34T) Gln12 Allele, BDKRB2 rs5810761, UCP’s and eNOS rs1799983.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.13-18,ref.
Twórcy
autor
- Department of Physical Education and Sport, Matej Bel University in Banska Bystrica, Banska Bystrica, Republic of Slovenia
autor
- Department of Tourism and Recreation, Adam Mickiewicz University in Poznan, Poznan, Poland
autor
- Department of Dance and Gymnastics, Poznan University of Physical Education, Poznan, Poland
autor
- Division of Sports and Defence Education, Poznan University of Physical Education, Poznan, Poland
Bibliografia
- 1. Tiziano FD, Palmieri V, Genuardi M, Zeppilli P. The role of genetic testing in the identification of young athletes with inherited primitive cardiac disorders at risk of exercise sudden death. Front Cardiovasc Med. 2016; 26(3): 28.
- 2. Brutsaert TD, Parra EJ. What makes a champion? Explaining variation in human athletic performance. Respir Physiol Neurobiol. 2006; 151(2-3): 109-123.
- 3. Gedda L. Sports and genetics. A study on twins (351 pairs).Acta Genet Med Gemellol (Roma). 1960; 9: 387-406.
- 4. Chagnon YC, Allard C, Bouchard C. Red blood cell genetic variation in Olympic endurance athletes. J Sport Sci. 1984; 2(2): 121-129.
- 5. Montgomery HE, Marshall R, Hemingway H, et al. Human gene for physical performance. Nature. 1998; 393: 221-222.
- 6. Pitsiladis Y, Wang G, Wolfarth B, et al. Genomics of elite sporting performance: what little we know and necessary advances. Br J Sports Med. 2013; 47(9): 550-555.
- 7. Eynon N, Hanson ED, Lucia A, et al. Genes for elite power and sprint performance: ACTN3 leads the way. Sports Med. 2013; 43: 803-817.
- 8. Ostrander EA, Huson HJ, Ostrander GK. Genetics of athletic performance. Annu Rev Genomics Hum Genet. 2009; 10: 407-429.
- 9. Peplonska B, Adamczyk JG, Siewierski M, et al. Genetic variants associated with physical and mental characteristics of the elite athletes in the Polish population. Scand J Med Sci Sports. 2016; May 3. doi: 10.1111/sms.12687.
- 10. Cięszczyk P, Willard K, Gronek P, et al.Are genes encoding proteoglycans really associated with the risk of anterior cruciate ligament rupture? Biol Sport. 2017; 34: 97-103.
- 11. Reimann F, Cox JJ, Belfer I, et al. Pain perception is altered by a nucleotide polymorphism in SCN9A. PNAS. 2010; 107(11): 5148-5153.
- 12. Pawlak M. Aspects of pain in sport. Trends Sport Sci. 2013; 3(20): 123-134.
- 13. Pawlak M. Praktyczne aspekty sensorycznej i modulującej funkcji nocyceptorów (Practical aspects of the sensory and modulatory function of nociceptors). Fizjot Pol. 2008; 2: 115-127.
- 14. Petho G, Reeh PW. Sensory and signaling mechanisms of bradykinin, eicosanoids, platelet-activating factor, and nitric oxide in peripheral nociceptors. Physiol Rev. 2012; 92(4): 1699-1775.
- 15. Mizumura K, Sugiura T, Katanosaka K, et al. Excitation and sensitization of nociceptors by bradykinin: What do we know? Exp Brain Res. 2009; 196(1): 53-65.
- 16. Rankinen T, Fuku N, Wolfarth B, et al. No evidence of a common DNA variant profile specific to world class endurance athletes. PLoS One. 2016; 11(1): e0147330.
- 17. Iwai N, Ohmichi N, Nakamura Y, Kinoshita M. DD genotype of the angiotensin-converting enzyme gene is a risk factor for left ventricular hypertrophy. Circulation. 1994; 90: 2622-2628.
- 18. Rigat B, Hubert C, Alhenc Gelas F, et al. An insertion/ deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest. 1990; 86: 1343-1346.
- 19. Williams AG, Rayson MP, Jubb M, et al. The ACE gene and muscle performance. Nature. 2000; 403: 615.
- 20. Cambien F, Poirier O, Lecerf L, et al. Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction. Nature. 1992; 359(6396): 641-644.
- 21. Norman B, Mahnke-Zizelman DK, Vallis A, Sabina RL. Genetic and other determinants of AMP deaminase activity in healthy adult skeletal muscle. J Appl Physiol. 1998; 85: 1273-1278.
- 22. Fischer H, Esbjörnsson M, Sabina RL, et al. AMP deaminase deficiency is associated with lower sprint cycling performance in healthy subjects. J Appl Physiol. 2007; 103: 315-322.
- 23. Thorstensson A. Muscle strength, fibre types and enzyme activities in man. Acta Physiol Scand Suppl. 1976; 443: 1-45.
- 24. Morisaki T, Sabina RL, Holmes EW. Adenylate deaminase. A multigene family in humans and rats. J Biol Chem. 1990; 265(20): 11482.
- 25. Lowenstein JM. Ammonia production in muscle and other tissues: the purine nucleotide cycle. Physiol Rev. 1972; 52(2): 382-414.
- 26. Rubio JC, Martin MA, Rabadan M, et al. Frequency of the C34T mutation of the AMPD1 gene in worldclass endurance athletes: does this mutation impair performance? J Appl Physiol. 2005; 98: 2108-2112.
- 27. Rico-Sanz J, Rankinen T, Joanisse DR, et al. Associations between cardiorespiratory responses to exercise and the C34T AMPD1 gene polymorphism in the HERITAGE Family Study. Physiol Genomics. 2003; 14: 161-166.
- 28. Fedotovskaya ON, Danilova AA, Ahmetov II. Effect of AMPD1 Gene Polymorphism on Muscle Activity in Humans. Bull Exp Biol Med. 2013; 154(10): 485-487.
- 29. Ginevičienė V, Jakaitienė A, Pranculis A, et al. AMPD1 rs17602729 is associated with physical performance of sprint and power in elite Lithuanian athletes. BMC Genet. 2014; 15: 58.
- 30. Grenda A, Leońska-Duniec A, Cięszczyk P, Zmijewski P. BDKRB2 GENE –9/+9 polymorphism and swimming performance. Biol Sport. 2014; 31(2): 109-113.
- 31. Regoli D, Barabé J. Pharmacology of bradykinin and related kinins. Pharmacol Rev. 1980; 32: 1-46.
- 32. Saunders CJ, de Milander L, Hew-Butler T, et al. Dipsogenic genes associated with weight changes during Ironman Triathlons. Hum Mol Genet. 2006; 15: 2980- 2987.
- 33. Williams AG, Dhamrait SS, Wootton PT, et al. Bradykinin receptor gene variant and human physical performance. J Appl Physiol. 2004; 96: 938-942.
- 34. Fu Y, Katsuya T, Matsuo A, et al. Relationship of bradykinin B2 receptor gene polymorphism with essential hypertension and left ventricular hypertrophy. Hypertens Res. 2004; 27: 933-938.
- 35. Hallberg P, Lind L, Michaëlsson K, et al. B2 bradykinin receptor (B2BKR) polymorphism and change in left ventricular mass in response to antihypertensive treatment: results from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation versus Atenolol (SILVHIA) trial. J Hypertens. 2003; 21: 621-624.
- 36. Braun A, Kammerer S, Maier E, et al. Polymorphisms in the gene for the human B2-bradykinin receptor. New tools in assessing a genetic risk for bradykinin-associated diseases. Immunopharmacology. 1996; 33: 32-35.
- 37. Lung CC, Chan EK, Zuraw BL. Analysis of an exon 1 polymorphism of the B2 bradykinin receptor gene and its transcript in normal subjects and patients with C1 inhibitor deficiency. J Allergy Clin Immunol. 1997; 99: 34-46.
- 38. Holdys J, Gronek P, Kryściak J, Stanisławski D. Genetic variants of uncoupling proteins-2 and -3 in relation to maximal oxygen uptake in different sports Acta Piochemica Polonica. 2013; 60(1): 71-75.
- 39. Fleury C, Sanchis D. The mitochondrial uncoupling protein-2: current status. Int J Biochem Cell Biol. 1999; 31(11): 1261-1278.
- 40. Tu N, Chen H, Winnikes U, et al. Structural organization and mutational analysis of the human uncoupling protein-2 (hUCP2) gene. Life Sci. 1999; 64(3): 41-50.
- 41. Bouchard C, Perusse L, Chagnon YC, et al. Linkage between markers in the vicinity of the uncoupling protein 2 gene and resting metabolic rate in humans. Hum Molec Genet. 1997; 6: 1887-1889.
- 42. Rosmond R, Bouchard C, Björntorp P. Lack of association between the uncoupling protein-2 Ala55Val gene polymorphism and phenotypic features of the metabolic syndrome. Biochim Biophys Acta. 2002; 1588(2): 103-105.
- 43. Warden C. Genetics of uncoupling proteins in humans. Int J Obes Relat Metab Disord. 1999; 23(S6): S46-48.
- 44. Esterbauer H, Schneitler C, Oberkofler H, et al. A common polymorphism in the promoter of UCP2 is associated with decreased risk of obesity in middle-aged humans. Nature Genet. 2001; 28: 178-183.
- 45. Beumann B, Schierning B, Toubro S, et al. The association between the val/ala-55 polymorphism of the uncoupling protein 2 gene and exercise efficiency. Int J Obes Relat Metab Disord. 2001; 4: 467-471.
- 46. Kimm SY, Glynn NW, Aston CE, et al. Racial differences in the relation between uncoupling protein genes and resting energy expenditure. Am J Clin Nutr. 2002; 75(4): 714-719.
- 47. Russell A, Wadley G, Snow R, et al. Slow component of VO2 kinetics: the effect of training status, fibre type, UCP3 mRNA and citrate synthase activity. Int J Obes Relat Metab Disord. 2002; 26(2): 157-164.
- 48. Schrauwen P, Russell AP, Moonen-Kornips E, et al. Effect of 2 weeks of endurance training on uncoupling protein 3 content in untrained human subjects. Acta Physiol Scand. 2005; 183(3): 273-280.
- 49. Bray M, Hagberg J, Perusse L, Rankinen T, et al. The human gene map for performance and health-related fitness phenotypes: the 2006-2007 update. Med Sci Sports Exerc. 2009; 41(1): 34-72. doi: 10.1249/ MSS.0b013e3181844179.
- 50. Culotta E, Koshland Jr DE. NO news is good news. Science. 1992; 258(5090): 1862-1865.
- 51. Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993; 329: 2002-2012.
- 52. Andrew PJ, Mayer B. Enzymatic function of nitric oxide synthases. Cardiovasc Res. 1999; 43: 521-531.
- 53. Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012; 33: 829-837.
- 54. Lange M, Enkhbaatar P, Nakano Y, Traber DL. Role of nitric oxide in shock: the large animal perspective. Front Biosci. 2009; 14: 1979-1989.
- 55. Harrison DG. Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest. 1997; 100: 2153-2157.
- 56. Hambrecht R, Adams V, Erbs S, et al. Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation. 2003; 107: 3152-3158.
- 57. Kolluru GK, Siamwala JH, Chatterjee S. eNOS phosphorylation in health and disease. Biochimie. 2010; 92: 1186-1198.
- 58. Yang A-L, Tsai S-J, Jyh Jiang M, Chen H. Chronic exercise increases both inducible and endothelial nitric oxide synthase gene expression in endothelial cells of rat aorta. J Biomed Sci. 2002; 9(2): 149-155.
- 59. Gielen S, Sandri M, Erbs S, Adams V. Exercise-induced modulation of endothelial nitric oxide production. Curr Pharm Biotechnol. 2011; 12: 1375-1384.
- 60. Green DJ, Spence A, Halliwill JR, et al. Exercise and vascular adaptation in humans. Exp Physiol. 2011; 96: 57-70.
- 61. Kojda G, Cheng YC, Burchfield J, Harrison DG. Dysfunctional regulation of endothelial nitric oxide synthase (eNOS) expression in response to exercise in mice lacking one eNOS gene. Circulation. 2001; 103: 2839-2844.
- 62. Pospieszna B, Karolkiewicz J, Tarnas J, et al. Influence of 12-week Nordic Walking training on biomarkers of endothelial function in healthy postmenopausal women. J Sports Med Phys Fit. 2016; Sep 22.
- 63. Marsden PA, Heng HH, Scherer SW, et al. Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase gene. J Biol Chem. 1993; 268(23): 17478-17488.
- 64. Vecoli C. Endothelial nitric oxide synthase gene polymorphisms in cardiovascular disease. Vitam Horm. 2014; 96: 387-406.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-66b353d3-8cc9-4ed7-9180-32abba4d50d5