Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 02 |
Tytuł artykułu

Analysis of the expression, subcellular and tissue localisation of phosphoglucan, water dikinase (PWD/GWD3) in Solanum tuberosum L.: a bioinformatics approach for the comparative analysis of two a-glucan, water dikinases (GWDs) from Solanum tuberosum L.

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There are several important factors affecting the rate of starch decomposition in plants, including the circadian clock, the regulation of gene expression, the regulation of enzyme activities and starch phosphorylation by glucan, water dikinase activities (GWDs). One isoform of glucan, water dikinase named GWD3 or PWD (EC 2.7.9.5) was isolated for the first time from Arabidopsis thaliana, and now we report its isolation and identification in Solanum tuberosum L. leaves and tubers. We compare StGWD3 sequence to the other GWDs sequences using bioinformatics tools and propose also structural models for the starch-binding domains in StGWD3 and StGWD1. The StGWD3 gene expression and protein were localised in different heterotrophic and autotrophic potato tissues and organs using in situ RT-PCR and immunolocalisation methods, respectively. Diurnal changes in the transcript abundance of StGWD3 in leaves were analysed using quantitative real-time PCR and they appeared to be typical for most genes involved in starch degradation in chloroplasts.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
35
Numer
02
Opis fizyczny
p.483-500,fig.,ref.
Twórcy
  • Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
autor
  • Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
autor
  • Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
autor
  • Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
autor
  • Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
  • Department of Biometrics and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
autor
  • Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
autor
  • Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
Bibliografia
  • Baunsgaard L, Lu¨tken H, Mikkelsen R, Glaring MA, Pham TT, Blennow A (2005) A novel isoform of glucan, water dikinase phosphorylates pre-phosphorylated a-glucans and is involved in starch degradation in Arabidopsis. Plant J 41:595–605
  • Blennow A, Engelsen SB (2010) Helix-breaking news: fighting crystalline starch energy deposits in the cell. Trends Plant Sci 15:236–240
  • Blennow A, Svensson B (2010) Dynamic of starch granule biogenesis— the role of redox-regulated enzymes and low-affinity carbohydrate-binding modules. Biocatal Biotransform 28:3–9
  • Boraston AB, Healey M, Klassen J, Ficko-Blean E, Lammerts van Bueren A, Law V (2006) A structural and functional analysis of a-glucan recognition by family 25 and 26 carbohydrate-binding modules reveals a conserved mode of starch recognition. J Biol Chem 281:587–598
  • Christiansen C, Hachem MA, Glaring MA, Viksø-Nielsen A, Sigurskjold BW, Svensson B, Blennow A (2009a) A CBM20 low-affinity starch-binding domain from glucan, water dikinase. FEBS Lett 583:1159–1163
  • Christiansen C, Abou Hachem M, Janecˇek S, Viksø-Nielsen A, Blennow A, Svensson B (2009b) The carbohydrate-binding module family 20-diversity, structure, and function. FEBS J 276:5006–5029
  • Clamp M, Cluff J, Searle SM, Barton GJ (2004) The Jalview Java alignment editor. Bioinformatics 20:426–427
  • Damager I, Engelsen SB, Blennow A, Møller BL, Motawia MS (2010) First principles insight into the a-glucan structures of starch: their synthesis, conformation, and hydration. Chem Rev 110:2049–2080
  • Dauter Z, Dauter M, Brzozowski AM, Christensen S, Borchert TV, Beier L, Wilson KS, Davies GJ (1999) X-ray structure of Novamyl, the five-domain ‘‘maltogenic’’ alpha-amylase from Bacillus stearothermophilus: maltose and acarbose complexes at 1.7 A ° resolution. Biochemistry 38:8385–8392
  • de Almeida Engler J, De Groodt R, Van Montagu M, Engler G (2001) In situ hybridization to mRNA of Arabidopsis tissue sections. Methods 23:325–334
  • Dudkiewicz M, Siminska J, Pawłowski K, Orzechowski S (2008) Bioinformatics analysis of oligosaccharide phosphorylation effect on the stabilization of the b-amylase-ligand complex. J Carb Chem 27:479–495
  • Edner C, Li J, Albrecht T, Mahlow S, Hejazi M, Hussain H, Kaplan F, Guy C, Smith SM, Steup M, Ritte G (2007) Glucan, water dikinase activity stimulates breakdown of starch granules by plastidial amylases. Plant Physiol 145:17–28
  • Fettke J, Eckermann N, Ko¨tting O, Ritte G, Steup M (2006) Novel starch-related enzymes and carbohydrates. Cell Mol Biol 152(Suppl):OL883–OL904
  • Fettke J, Hejazi M, Smirnova J, Ho¨chel E, Stage M, Steup M (2009) Eukaryotic starch degradation: integration of plastidial and cytosolic pathways. J Exp Bot 60:2907–2922
  • Fudali S, Janakowski S, Sobczak M, Griesser M, Grundler FMW, Golinowski W (2008) Two tomato a-expansins show distinct spatial and temporal expression patterns during development of nematode-induced syncytia. Physiol Plant 132:370–383
  • Giardina T, Gunning AP, Juge N, Faulds CB, Furniss CS, Svensson B, Morris VJ, Williamson G (2001) Both binding sites of the starch binding domain of Aspergillus niger glucoamylase are essential for inducing a conformational change in amylose. J Mol Biol 313:1149–1159
  • Glaring MA, Zygadło A, Thorneycroft D, Schulz A, Smith SM, Blennow A, Baunsgaard L (2007) An extra-plastidal a-glucan, water dikinase from Arabidopsis phosphorylates amylopectin in vitro and is not necessary for transient starch degradation. J Exp Bot 58:3949–3960
  • Glaring MA, Baumann MJ, Hachem MA, Nakai H, Nakai N, Santelia D, Sigurskjold BW, Zeeman SC, Blennow A, Svensson B (2011) Starch binding domains in the CBM45 family—low-affinity domains from glucan, water dikinase and a-amylase involved in plastidial starch metabolism. FEBS J 278:1175–1185
  • Grennan AK (2006) Regulation of starch metabolism in Arabidopsis leaves. Plant Physiol 142:1343–1345
  • Hansen PI, Larsen FH, Motawia SM, Blennow A, Spraul M, Dvortsak P, Engelsen SB (2008) Structure and hydration of the amylopectin trisaccharide building blocks-synthesis, NMR, and molecular dynamics. Biopolymers 89:1179–1193
  • Hansen PI, Spraul M, Dvortsak P, Larsen FH, Blennow A, Motawia MS, Engelsen SB (2009) Starch phosphorylation-maltosidic restrains upon 30- and 60-phosphorylation investigated by chemical synthesis, molecular dynamics and NMR spectroscopy. Biopolymers 91:179–193
  • Hejazi M, Fettke J, Haebel S, Edner C, Paris O, Frohberg C, Steup M, Ritte G (2008) Glucan, water dikinase phosphorylates crystalline maltodextrins and thereby initiates solubilisation. Plant J 55:323–334
  • Hejazi M, Fettke J, Paris O, Steup M (2009) The two plastidial starchrelated dikinases sequentially phosphorylate glucosyl residues at the surface of both the A- and B-type allomorphs of crystallized maltodextrins but the mode of action differs. Plant Physiol 150:962–976
  • Hejazi M, Fettke J, Ko¨tting O, Zeeman SC, Steup M (2010) The laforin-like dual-specificity phosphatase SEX4 from Arabidopsis hydrolyzes both C6- and C3-phosphate esters introduced by starch-related dikinases and thereby affects phase transition of a-glucans. Plant Physiol 152:711–722
  • Hejazi M, Steup M, Fettke J (2012) The plastidial glucan, water dikinase (GWD) catalyses multiple phosphotransfer reactions. FEBS J 279:1953–1966
  • Jacobson MP, Pincus DL, Rapp CS, Day TJF, Honig B, Shaw DE, Friesner RA (2004) A hierarchical approach to all-atom loop prediction. Proteins 55:351–367
  • Janecˇek S, Sevcı´k J (1999) The evolution of starch-binding domain. FEBS Lett 456:119–125
  • Janecˇek S, Svensson B, MacGregor EA (2011) Structural and evolutionary aspects of two families of non-catalytic domains present in starch and glycogen binding proteins from microbes, plants and animals. Enzyme Microb Technol 49:429–440
  • Jaroszewski L, Rychlewski L, Li Z, Li W, Godzik A (2005) FFAS03: a server for profile-profile sequence alignments. Nucl Acids Res 33:W284–W288
  • Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23:403–405
  • Ko¨tting O, Pusch K, Tiessen A, Geigenberger P, Steup M, Ritte G (2005) Identification of a novel enzyme required for starch metabolism in Arabidopsis leaves. The phosphoglucan, water dikinase. Plant Physiol 137:242–252
  • Ko¨tting O, Kossmann J, Zeeman SC, Lloyd JR (2010) Regulation of starch metabolism: the age of enlightenment? Curr Opin Plant Biol 13:1–9
  • Laemmli UL (1970) Cleavage of structural proteins during the assembly and of the head of bacteriophage T4. Nature 227:680–685
  • Lloyd JR, Kossmann J, Ritte G (2005) Leaf starch degradation comes out of the shadows. Trends Plant Sci 10:130–137
  • Lorberth R, Ritte G, Willmitzer L, Kossmann J (1998) Inhibition of a starch-granule-bound protein leads to modified starch and repression of cold sweetening. Nat Biotech 16:473–477
  • Macewicz J, Orzechowski S, Dobrzynska U, Haebel S (2006) Is quantity of protein in barley forms determined by proteins localized in the subaleurone layer? Acta Physiol Plant 28:409–416
  • Machovic M, Janecˇek S (2006) Starch-binding domains in the postgenome era. Cell Mol Life Sci 63:2710–2724
  • Mikkelsen R, Baunsgaard L, Blennow A (2004) Functional characterisation of a-glucan, water dikinase, the starch phosphorylating enzyme. Biochem J 377:525–532
  • Mikkelsen R, Mutenda KE, Mant A, Schu¨rmann P, Blennow A (2005) a-Glucan, water dikinase (GWD): a plastidic enzyme with redox-regulated and coordinated catalytic activity and binding affinity. Proc Natl Acad Sci USA 102:1785–1790
  • Mikkelsen R, Suszkiewicz K, Blennow A (2006) A novel type carbohydrate-binding module identified in a-glucan, water dikinases is specific for regulated plastidial starch metabolism. Biochemistry 45:4674–4682
  • Nicholas KB, Nicholas HB Jr, Deerfield DW (1997) GeneDoc: analysis and visualization of genetic variation. EMBNEW. NEWS 4:14. http://www.psc.edu/biomed/genedoc
  • Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907–2914
  • Orzechowski S (2008) Starch metabolism in leaves. Acta Biochim Pol 55:435–445
  • Ritte G, Lorberth R, Steup M (2000) Reversible binding of the starchrelated R1 protein to the surface of the transitory starch granules. Plant J 21:387–391
  • Ritte G, Lloyd JR, Eckermann N, Rottmann A, Kossmann J, Steup M (2002) The starch related R1 protein is an a-glucan, water dikinase. Proc Natl Acad Sci USA 99:7166–7171
  • Ritte G, Scharf A, Eckermann N, Haebel S, Steup M (2004) Phosphorylation of transitory starch is increased during degradation. Plant Physiol 135:2068–2077
  • Ritte G, Heydenreich M, Mahlow S, Haebel S, Ko¨tting O, Steup M (2006) Phosphorylation of C6- and C3-positions of glucosyl residues in starch is catalysed by distinct dikinases. FEBS Lett 580:4872–4876
  • Rychlewski L, Jaroszewski L, Li W, Godzik A (2000) Comparison of sequence profiles. Strategies for structural predictions using sequence information. Protein Sci 9:232–241
  • Smith AM (2012) Starch in the Arabidopsis plant. Starch 64:421–434
  • Smith SM, Fulton DC, Chia T, Thorneycroft D, Chapple A, Dunstan H, Hylton C, Zeeman SC, Smith AM (2004) Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in Arabidopsis leaves. Plant Physiol 136:2687–2699
  • Smith AM, Zeeman SC, Smith SM (2005) Starch degradation. Annu Rev Plant Biol 56:73–98
  • Sorimachi K, Le Gal-Coeffet MF, Williamson G, Archer DB, Williamson MP (1997) Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to b-cyclodextrin. Structure 5:647–661
  • Svensson B, Jespersen H, Sierks MR, MacGregor EA (1989) Sequence homology between putative raw-starch binding domains from different starch-degrading enzymes. Biochem J 264:309–311
  • Tester RF, Karkalas J, Qi X (2004) Starch structure and digestibility enzyme-substrate relationship. World’s Poult Sci J 60:186–195
  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882
  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354
  • Truszkiewicz W, Paszkowski A (2005) Some structural properties of plant serine:glyoxylate aminotransferase. Acta Biochim Pol 52:527–534
  • Weise SE, van Wijk KJ, Sharkey TD (2011) The role of transitory starch in C3, CAM, and C4 metabolism and opportunities for engineering leaf starch accumulation. J Exp Bot 62:3109–3118
  • Wischmann B, Nielsen TH, Møller BL (1999) In vitro biosynthesis of phosphorylated starch in intact potato amyloplasts. Plant Physiol 119:455–462
  • Yu TS, Kofler H, Ha¨usler RE, Hille D, Flu¨gge UI, Zeeman SC, Smith AM, Kossmann J, Lloyd J, Ritte G, Steup M, Lue WL, Chen J, Weber A (2001) The Arabidopsis sex1 mutant is defective in the R1 protein, a general regulator of starch degradation in plants, and not in the chloroplast hexose transporter. Plant Cell 13:1907–1918
Uwagi
rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-6619f6c1-a905-4dcc-8705-5bb76d84ef84
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.