Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 10 | 4 |
Tytuł artykułu

Paediatric physical activity and health: Moving towards a measure of quality

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is clear that physical activity, holistically, is linked with several positive factors through the life course. There exists a large evidence base for physical activity quantity, yet there has been little integration of physical activity qualities, and whilst quality is a nebulous term, recent developments in literature suggest it may be a viable measure in the characterisation of physical activity. The purpose of the study was to comprehensively review the development towards a measure of physical activity quality. ‪A review of literature was conducted using online databases: Web of Science, PubMed and Google Scholar. A narrative review was subsequently prepared on the topic and development of physical activity quality. ‪Quantitative assessment of movement quality shows promise in the evaluation and measurement of physical activity, particularly in relation to motor development, fundamental movement skills and body mass indices. ‪Whilst measures of movement quality display promise, this is a burgeoning field of research contributing to physical activity literature, and as such, these measures must be refined, developed and investigated further.
Słowa kluczowe
Twórcy
autor
  • Faculty of Health and Life Sciences, Coventry University, United Kingdom
  • Engineering Behaviour Analytics in Sports and Exercise (E-BASE) Research Group, Swansea University, Wales, United Kingdom
autor
  • Engineering Behaviour Analytics in Sports and Exercise (E-BASE) Research Group, Swansea University, Wales, United Kingdom
  • College of Engineering, Swansea University, Wales, United Kingdom
Bibliografia
  • [1] Tremblay MS, Warburton DE, Janssen I, et al. New Canadian physical activity guidelines. Appl Physiol Nutri Metab. = Physiologie appliquee, nutrition et metabolisme. 2011;36(1):36-46;7-58. https://doi.org/10.1139/H11-009
  • [2] WHO. Global recommendations on physical activity for health. http://www.who.int/dietphysicalactivity/publications/9789241599979/en/. 2010.
  • [3] LeBlanc AG, Janssen I. Difference between self-reported and accelerometer measured moderate-to-vigorous physical activity in youth. Pediatr Exerc Sci. 2010;22(4):523-34. https://doi.org/10.1123/pes.22.4.523
  • [4] Nelson TF, Gortmaker SL, Subramanian SV, Cheung L, Wechsler H. Disparities in overweight and obesity among US college students. Am J Health Behav. 2007;31(4):363-73. https://doi.org/10.5993/AJHB.31.4.3
  • [5] Strong WB, Malina RM, Blimkie CJ, et al. Evidence based physical activity for school-age youth. J Pediatr. 2005;146(6):732-7. https://doi.org/10.1016/j.jpeds.2005.01.055
  • [6] Saunders TJ, Gray CE, Poitras VJ, et al. Combinations of physical activity, sedentary behaviour and sleep: Relationships with health indicators in school-aged children and youth. Appl Physiol Nutri Metab. = Physiologie appliquee, nutrition et metabolisme. 2016;41(6 Suppl 3):S283-93. https://doi.org/10.1139/apnm-2015-0626
  • [7] Chaput JP, Gray CE, Poitras VJ, et al. Systematic review of the relationships between sleep duration and health indicators in school-aged children and youth. Appl Physiol Nutri Metab. = Physiologie appliquee, nutrition et metabolisme. 2016;41(6 Suppl 3):S266-82. https://doi.org/10.1139/apnm-2015-0627
  • [8] Carson V, Hunter S, Kuzik N, et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth: An update. Appl Physiol Nutri Metab. = Physiologie appliquee, nutrition et metabolisme. 2016;41(6 Suppl 3):S240-65. https://doi.org/10.1139/apnm-2015-0630
  • [9] Poitras VJ, Gray CE, Borghese MM, et al. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Appl Physiol Nutri Metab. = Physiologie appliquee, nutrition et metabolisme. 2016;41(6 Suppl 3):S197-239. https://doi.org/10.1139/apnm-2015-0663
  • [10] Tremblay MS, Carson V, Chaput JP, et al. Canadian 24-hour movement guidelines for children and youth: An integration of physical activity, sedentary behaviour, and sleep. Appl Physiol Nutri Metab. = Physiologie appliquee, nutrition et metabolisme. 2016;41(6 Suppl 3):S311-27. https://doi.org/10.1139/apnm-2016-0151
  • [11] American Academy of P. Policy Statement: Prevention of overweight and obesity. Pediatrics. 2007;119(2):405. https://doi.org/10.1542/peds.2006-3222
  • [12] Tremblay MS, Esliger DW, Copeland JL, Barnes JD, Bassett DR. Moving forward by looking back: lessons learned from long-lost lifestyles. Appl Physiol Nutri Metab. = Physiologie appliquee, nutrition et metabolisme. 2008;33(4):836-42. https://doi.org/10.1139/H08-045
  • [13] Warburton DE, Charlesworth S, Ivey A, Nettlefold L, Bredin SS. A systematic review of the evidence for Canada’s Physical Activity Guidelines for Adults. Int J Nutr Phys Act. 2010;7:39. doi:10.1186/1479-5868-7-39. https://doi.org/10.1186/1479-5868-7-39
  • [14] Ortega FB, Konstabel K, Pasquali E, et al. Objectively measured physical activity and sedentary time during childhood, adolescence and young adulthood: A cohort study. PLoS One. 2013;8(4):e60871. https://doi.org/10.1371/journal.pone.0060871
  • [15] Sallis JF, Patrick K. Physical activity guidelines for adolescents: Consensus statement. Pediatric Exer Sci. 1994;6:302-14. https://doi.org/10.1123/pes.6.4.302
  • [16] Telama R, Yang X, Leskinen E, et al. Tracking of physical activity from early childhood through youth into adulthood. Med Sci Sport Exerc. 2013. https://doi.org/10.1249/MSS.0000000000000181
  • [17] Twisk JW, Kemper HC, van Mechelen W, Post GB. Tracking of risk factors for coronary heart disease over a 14-year period: A comparison between lifestyle and biologic risk factors with data from the Amsterdam Growth and Health Study. Am J Epidemiol. 1997;145(10):888-98. https://doi.org/10.1093/oxfordjournals.aje.a009048
  • [18] Bellanca JL, Lowry KA, Vanswearingen JM, Brach JS, Redfern MS. Harmonic ratios: A quantification of step to step symmetry. J Biomech. 2013;46(4):828-31. https://doi.org/10.1016/j.jbiomech.2012.12.008
  • [19] Brach JS, McGurl D, Wert D, et al. Validation of a measure of smoothness of walking. J Gerontol: Series A, Biol Sci Med Sci. 2011;66(1):136-41. https://doi.org/10.1093/gerona/glq170
  • [20] Sejdic E, Lowry KA, Bellanca J, Redfern MS, Brach JS. A comprehensive assessment of gait accelerometry signals in time, frequency and time-frequency domains. IEEE transactions on neural systems and rehabilitation engineering: A publication of the IEEE Engineering in Medicine and Biology Society. 2014;22(3):603-12. https://doi.org/10.1109/TNSRE.2013.2265887
  • [21] Howcroft J, Kofman J, Lemaire ED. Review of fall risk assessment in geriatric populations using inertial sensors. J Neuroeng Rehab. 2013;10(1):91. https://doi.org/10.1186/1743-0003-10-91
  • [22] Cavill N, Biddle S, Sallis JF. Health enhancing physical activity for young people: Statement of the United Kingdom Expert Consensus Conference. Pediatr Exerc Sci. 2001;13(1):12-25. https://doi.org/10.1123/pes.13.1.12
  • [23] CMO. Start active, stay alive: A report on physical activity for health from the four home countries’ Chief Medical Officers. UK2011.
  • [24] Health Do. Start Active, Stay Active: A report on physical activity from the four home countries’ Chief Medical Officers. In: Health Do, editor. London, UK2011.
  • [25] Aging DoHa. Get up and grow: Healthy eating and physical activity for early childhood. In: Aging DoHa, editor. Canberra, Australia: Australian Government; 2010.
  • [26] Tremblay MS, LeBlanc AG, Carson V, et al. Canadian Physical Activity Guidelines for the Early Years (aged 0–4 years). Appl Physiol Nutr Metab. 2012;37(2):345-56. https://doi.org/10.1139/h2012-018
  • [27] Tremblay MS, Carson V, Chaput JP. Introduction to the Canadian 24-Hour Movement Guidelines for Children and Youth: An Integration of Physical Activity, Sedentary Behaviour, and Sleep. Appl Physiol Nutr Metab. = Physiologie appliquee, nutrition et metabolisme. 2016;41(6 Suppl 3):iii-iv. https://doi.org/10.1139/apnm-2016-0203
  • [28] Biddle SJ, Gorely T, Stensel DJ. Health-enhancing physical activity and sedentary behaviour in children and adolescents. J Sport Sci. 2004;22(8):679-701. https://doi.org/10.1080/02640410410001712412
  • [29] Webber KJ, Loescher LJ. A systematic review of parent role modeling of healthy eating and physical activity for their young African American children. JSPN. 2013;18(3):173-88. https://doi.org/10.1111/jspn.12033
  • [30] Katzmarzyk PT, Barreira TV, Broyles ST, et al. Physical activity, sedentary time, and obesity in an international sample of children. Med Sci Sport Exerc. 2015;47(10):2062-9. https://doi.org/10.1249/MSS.0000000000000649
  • [31] Bunker LK. Psycho-physiological contributions of physical activity and sports for girls. President’s Council on Physical Fitness and Sports Research Digest. 1998;3:1-10.
  • [32] Kristensen PL, Moeller NC, Korsholm L, et al. The association between aerobic fitness and physical activity in children and adolescents: the European youth heart study. Eur J Appl Physiol. 2010;110(2):267-75. https://doi.org/10.1007/s00421-010-1491-x
  • [33] Mountjoy M, Andersen LB, Armstrong N, et al. International Olympic Committee consensus statement on the health and fitness of young people through physical activity and sport. Br J Sport Med.2011;45(11):839-48. https://doi.org/10.1136/bjsports-2011-090228
  • [34] Blair SN, Clark DG, Cureton KJ, Powell KE. Exercise and fitness in childhood: Implications for a lifetime of health. In: Gisolfi CV, Lamb D, editors. Perspectives in Exercise Science and Sports Medicine. New York: McGraw-Hill; 1989.
  • [35] Morrow JR, Jr., Tucker JS, Jackson AW, Martin SB, Greenleaf CA, Petrie TA. Meeting physical activity guidelines and health-related fitness in youth. Am J Prevent Med. 2013;44(5):439-44. https://doi.org/10.1016/j.amepre.2013.01.008
  • [36] Janssen I, Leblanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7:40. https://doi.org/10.1186/1479-5868-7-40
  • [37] Dietz WH. Periods of risk in childhood for the development of adult obesity - What do we need to learn? J Nutr. 1997;127(9):S1884-S6. https://doi.org/10.1093/jn/127.9.1884S
  • [38] Malina RM. Tracking of physical activity and physical fitness across the lifespan. Res Q Exerc Sport. 1996;67(3):S48-S57. https://doi.org/10.1080/02701367.1996.10608853
  • [39] Biddle SJ, Asare M. Physical activity and mental health in children and adolescents: A review of reviews. Br J Sport Med. 2011;45(11):886-95. https://doi.org/10.1136/bjsports-2011-090185
  • [40] Goldfield GS, Harvey A, Grattan K, Adamo KB. Physical activity promotion in the preschool years: A critical period to intervene. Int J Environ Res Publ Health. 2012;9(4):1326-42. https://doi.org/10.3390/ijerph9041326
  • [41] Guinhouya BC, Samouda H, Zitouni D, Vilhelm C, Hubert H. Evidence of the influence of physical activity on the metabolic syndrome and/or on insulin resistance in pediatric populations: A systematic review. Int J Pediatr Obes. 2011;6(5-6):361-88. https://doi.org/10.3109/17477166.2011.605896
  • [42] Clark CC, Barnes CM, Stratton G, McNarry MA, Mackintosh KA, Summers HD. A review of emerging analytical techniques for objective physical activity measurement in humans. Sport Med. 2016. https://doi.org/10.1007/s40279-016-0585-y
  • [43] Timmons BW, Leblanc AG, Carson V, et al. Systematic review of physical activity and health in the early years (aged 0-4 years). Appl Physiol Nutr Metab. = Physiologie appliquee, nutrition et metabolisme. 2012;37(4):773-92. https://doi.org/10.1139/h2012-070
  • [44] Tucker P. The physical activity levels of preschool-aged children: A systematic review. Early Child Res Q. 2008;23(4):547-58. https://doi.org/10.1016/j.ecresq.2008.08.005
  • [45] Stodden DF, Goodway JD, Langendorfer SJ, et al. A developmental perspective on the role of motor skill competence in physical activity: An emergent relationship. Quest. 2008;60(2):290-306. https://doi.org/10.1080/00336297.2008.10483582
  • [46] Harter S. The construction of the self: a developmental perspective. New York: Guilford Press; 1999.
  • [47] Schneider W, Schumann-Hengsteler R, Sodian B. Young children’s cognitive development: Interrelationships among executive functioning, working memory, verbal ability, and theory of mind. Taylor & Francis; 2014. https://doi.org/10.4324/9781410612007
  • [48] Hirtz P, Starosta W. Sensitive and critical periods of motor co-ordination development and its relation to motor learning. J Hum Kinet. 2002;7:19-28.
  • [49] Sylva K. Critical periods in childhood learning. Br Med Bull. 1997;53(1):185-97. https://doi.org/10.1093/oxfordjournals.bmb.a011599
  • [50] Weiss MR, Amorose AJ. Children’s self-perception, in the physical domain: Between-and withinage variability in level, accuracy, and sources of perceived competence. J Sport Exerc Psychol. 2005;27:244. https://doi.org/10.1123/jsep.27.2.226
  • [51] Robinson LE, Stodden DF, Barnett LM, et al. Motor competence and its effect on positive developmental trajectories of health. Sport Med. 2015;45(9):1273-84. https://doi.org/10.1007/s40279-015-0351-6
  • [52] Gallahue DL, Ozmun JC. Understanding motor development: infants, children, adolescents, adults.Boston; United States: McGraw-Hill; 2006.
  • [53] Henderson S, Sugden D, Barnett A. Movement assessment battery for children-2. 2nd edition [Movement ABC-2]. London, UK: The Psychological Corporation; 2007. https://doi.org/10.1037/t55281-000
  • [54] Brown T, Lalor A. The movement assessment battery for children ‒ second edition (MABC-2): A review and critique. Phys Occup Ther Pediatr. 2009;29(1):86-103. https://doi.org/10.1080/01942630802574908
  • [55] Visser J, Jongmans M. Extending the movement assessment battery for children to be suitable for 3-year-olds in the Netherlands. 2004.
  • [56] Chow SK, Chan LL, Chan C, Lau CHY. Reliability of the experimental version of the Movement ABC. Br J Ther Rehab. 2002;9:404-7. https://doi.org/10.12968/bjtr.2002.9.10.13677
  • [57] Faber I, Nijhuis-van der Sanden MW. The movement assessment battery for children. Standardisation and reliability of age band 5: Young adults. 2004.
  • [58] Podstawski R, Konopka S, Choszcz D, et al. Evaluation of the reliability of the 8-second skipping with hand clapping test in 5 and 6 year old kindergarteners with use of the test-retest method: methodological aspects and practical implications. Hum Mov. 2018;19(3):55-63. https://doi.org/10.5114/hm.2018.76080
  • [59] Podstawski R, Konopka S, Choszcz D, Merino-Marban R, Romero-Ramos O, Curtolo C. Evaluation of the reliability of the 8-second skipping with hand clapping test with use of the retest method. Trends Sport Sci. 2017;4(24):143-50. https://doi.org/10.23829/TSS.2017.24.4-1
  • [60] Podstawski R, Markowski P, Choszcz D, Klimczak J, Romero-Ramos O, Merino-Marban R. Methodological aspect of evaluation of the reliability of the 3-minute buroee test. Arch Budo. 2016;12(137-144).
  • [61] Lubans DR, Morgan PJ, Cliff DP, Barnett LM, Okely AD. Fundamental movement skills in children and adolescents: review of associated health benefits. Sport Med. 2010;40(12):1019-35. https://doi.org/10.2165/11536850-000000000-00000
  • [62] Barnett L, Stodden DF, Cohen KE, et al. Fundamental movement skills: An important focus. J Teach Phys Educ. 2016; Advance Online Publication. https://doi.org/10.1123/jtpe.2014-0209
  • [63] Barnett LM, Ridgers ND, Salmon J. Associations between young children’s perceived and actual ball skill competence and physical activity. J Sci Med Sport / Sports Medicine Australia. 2015;18(2):167-71. https://doi.org/10.1016/j.jsams.2014.03.001
  • [64] Holfelder B, Schott N. Relationship of fundamental movement skills and physical activity in children and adolescents: A systematic review. Psychol Sport Exerc. 2014;15(4):382-91. https://doi.org/10.1016/j.psychsport.2014.03.005
  • [65] Okely AD, Booth ML, Patterson JW. Relationship of physical activity to fundamental movement skills among adolescents. Med Sci Sport Exerc. 2001;33(11):1899-904. https://doi.org/10.1097/00005768-200111000-00015
  • [66] Hamstra-Wright KL, Swanik CB, Sitler MR, et al. Gender comparisons of dynamic restraint and motor skill in children. Clin J Sport Med: Official journal of the Canadian Academy of Sport Medicine. 2006;16(1):56-62. https://doi.org/10.1097/01.jsm.0000179232.10261.65
  • [67] McKenzie TL, Sallis JF, Broyles SL, et al. Childhood movement skills: Predictors of physical activity in Anglo American and Mexican American adolescents? Res Q Exerc Sport. 2002;73(3):238-44. https://doi.org/10.1080/02701367.2002.10609017
  • [68] Barnett LM, van Beurden E, Morgan PJ, Brooks LO, Beard JR. Childhood motor skill proficiency as a predictor of adolescent physical activity. J Adolesc Health: official publication of the Society for Adolescent Medicine. 2009;44(3):252-9. https://doi.org/10.1016/j.jadohealth.2008.07.004
  • [69] Cliff DP, Okely AD, Smith LM, McKeen K. Relationships between fundamental movement skills and objectively measured physical activity in preschool children. Pediatr Exerc Sci. 2009;21(4):436-49. https://doi.org/10.1123/pes.21.4.436
  • [70] Cairney J, Hay JA, Faught BE, Hawes R. Developmental coordination disorder and overweight and obesity in children aged 9-14 y. Int J Obes. 2005;29(4):369-72. https://doi.org/10.1038/sj.ijo.0802893
  • [71] Rivilis I, Hay J, Cairney J, Klentrou P, Liu J, Faught BE. Physical activity and fitness in children with developmental coordination disorder: a systematic review. Res Develop Disab. 2011;32(3):894-910. https://doi.org/10.1016/j.ridd.2011.01.017
  • [72] Lopes VP, Stodden DF, Bianchi MM, Maia JA, Rodrigues LP. Correlation between BMI and motor coordination in children. J Sci Med Sport / Sports Medicine Australia. 2012;15(1):38-43. https://doi.org/10.1016/j.jsams.2011.07.005
  • [73] Lopes VP, Rodrigues LP, Maia JA, Malina RM. Motor coordination as predictor of physical activity in childhood. Scand J Med Sci Sport. 2011;21(5):663-9. https://doi.org/10.1111/j.1600-0838.2009.01027.x
  • [74] Hamstra-Wright KL, Swanik CB, Sitler MR, et al. The role of excess mass in the adaptation of children’s gait. Hum Mov Sci. 2014;36:12-9. https://doi.org/10.1016/j.humov.2014.05.002
  • [75] Nantel J, Mathieu ME, Prince F. Physical activity and obesity: biomechanical and physiological key concepts. J Obes. 2011;2011:650230. https://doi.org/10.1155/2011/650230
  • [76] Shultz SP, Hills AP, Sitler MR, Hillstrom HJ. Body size and walking cadence affect lower extremity joint power in children’s gait. Gait & Posture. 2010;32(2):248-52. https://doi.org/10.1016/j.gaitpost.2010.05.001
  • [77] Blakemore VJ, Fink PW, Lark SD, Shultz SP. Mass affects lower extremity muscle activity patterns in children’s gait. Gait & Posture. 2013;38(4):609-13. https://doi.org/10.1016/j.gaitpost.2013.02.002
  • [78] Nantel J, Brochu M, Prince F. Locomotor strategies in obese and non-obese children. Obesity. 2006;14(10):1789-94. https://doi.org/10.1038/oby.2006.206
  • [79] Stratton G, Ridgers ND, Fairclough SJ, Richardson DJ. Physical activity levels of normal-weight and overweight girls and boys during primary school recess. Obesity. 2007;15(6):1513-9. https://doi.org/10.1038/oby.2007.179
  • [80] McNarry MA, Boddy LM, Stratton GS. The relationship between body mass index, aerobic performance and asthma in a pre-pubertal, population-level cohort. Eur J Appl Physiol. 2014;114(2):243-9. https://doi.org/10.1007/s00421-013-2772-y
  • [81] McGraw B, McClenaghan BA, Williams HG, Dickerson J, Ward DS. Gait and postural stability in obese and nonobese prepubertal boys. Arch Phys Med Rehab. 2000;81(4):484-9. https://doi.org/10.1053/mr.2000.3782
  • [82] Hills AP, Andersen LB, Byrne NM. Physical activity and obesity in children. Br J Sport Med.2011;45(11):866-70. https://doi.org/10.1136/bjsports-2011-090199
  • [83] Hills AP, Parker AW. Gait characteristics of obese pre-pubertal children: effects of diet and exercise on parameters. Int J Rehab Res. 1991;14(4):348-9. https://doi.org/10.1097/00004356-199112000-00010
  • [84] Yang CC, Hsu YL. A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors. 2010;10(8):7772-88. https://doi.org/10.3390/s100807772
  • [85] Tudor-Locke C, Craig CL, Beets MW, et al. How many steps/day are enough? for children and adolescents. Int J Behav Nutr Phy. 2011;8:78. https://doi.org/10.1186/1479-5868-8-78
  • [86] Tudor-Locke C, Craig CL, Brown WJ, et al. How many steps/day are enough? for adults. Int J Behav Nutr Phy. 2011;8:79. https://doi.org/10.1186/1479-5868-8-79
  • [87] Corder K, Ekelund U, Steele RM, Wareham NJ, Brage S. Assessment of physical activity in youth. J Appl Physiol. 2008;105(3):977-87. https://doi.org/10.1152/japplphysiol.00094.2008
  • [88] Clark CCT, Nobre GC, Fernandes JFT, et al. Physical activity characterization: does one site fit all? Physiol Measur. 2018;39(9):09TR2. https://doi.org/10.1088/1361-6579/aadad0
  • [89] Schoeller DA. Recent advances from application of doubly labeled water to measurement of human energy expenditure. J Nutr. 1999;129(10):1765-8. https://doi.org/10.1093/jn/129.10.1765
  • [90] Ekelund U, Sjostrom M, Yngve A, et al. Physical activity assessed by activity monitor and doubly labeled water in children. Med Sci Sport Exerc. 2001;33(2):275-81. https://doi.org/10.1097/00005768-200102000-00017
  • [91] Welk G. Physical activity assessments for health-related research. Champaign: Human Kinetics; 2002.
  • [92] Bussmann JB, van den Berg-Emons RJ. To total amount of activity... and beyond: Perspectives on measuring physical behavior. Frontier Psycholog. 2013;4:463. https://doi.org/10.3389/fpsyg.2013.00463
  • [93] Thorburn AW, Proietto J. Biological determinants of spontaneous physical activity. Obes Rev.: an official journal of the International Association for the Study of Obesity. 2000;1(2):87-94. https://doi.org/10.1046/j.1467-789x.2000.00018.x
  • [94] Baquet G, Stratton G, Van Praagh E, Berthoin S. Improving physical activity assessment in prepubertal children with high-frequency accelerometry monitoring: a methodological issue. Prevent Med. 2007;44(2):143-7. https://doi.org/10.1016/j.ypmed.2006.10.004
  • [95] Shiri R, Solovieva S, Husgafvel-Pursiainen K, et al. The role of obesity and physical activity in non-specific and radiating low back pain: the Young Finns study. Seminars Arthritis Rheuma. 2013;42(6):640-50. https://doi.org/10.1016/j.semarthrit.2012.09.002
  • [96] Esparza J, Fox C, Harper IT, Bennett PH, Schulz LO, Valencia ME, Ravussin E. Daily energy expenditure in Mexican and USA Pima indians: Low physical activity as a possible cause of obesity. Int J Obes Relat Metab Disord.: journal of the International Association for the Study of Obesity. 2000;24(1):55-9. https://doi.org/10.1038/sj.ijo.0801085
  • [97] Montoye HJ. Introduction: evaluation of some measurements of physical activity and energy expenditure. Med Sci Sport Exerc.2000;32(9 Suppl):S439-41. https://doi.org/10.1097/00005768-200009001-00001
  • [98] Ainsworth BE, Haskell WL, Herrmann SD, et al. 2011 Compendium of Physical Activities: A second update of codes and MET values. Med Sci Sport Exerc.2011;43(8):1575-81. https://doi.org/10.1249/MSS.0b013e31821ece12
  • [99] Ainsworth BE, Haskell WL, Leon AS, et al. Compendium of physical activities: classification of energy costs of human physical activities. Med Sci Sport Exerc. 1993;25(1):71-80. https://doi.org/10.1249/00005768-199301000-00011
  • [100] Ainsworth BE, Haskell WL, Whitt MC, et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sport Exerc. 2000;32(9 Suppl):S498-504. https://doi.org/10.1097/00005768-200009001-00009
  • [101] Riddoch CJ, Boreham CA. The health-related physical activity of children. Sport Med. 1995;19(2):86-102. https://doi.org/10.2165/00007256-199519020-00002
  • [102] Mattocks C, Leary S, Ness A, et al. Calibration of an accelerometer during free-living activities in children. Int J Pediatr Obes.: an official journal of the International Association for the Study of Obesity. 2007;2(4):218-26. https://doi.org/10.1080/17477160701408809
  • [103] Bouten CV, Westerterp KR, Verduin M, Janssen JD. Assessment of energy expenditure for physical activity using a triaxial accelerometer. Medicine and science in sports and exercise. 1994;26(12):1516-23.https://doi.org/10.1249/00005768-199412000-00016
  • [104] Bouten CV, Koekkoek KT, Verduin M, Kodde R, Janssen JD. A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE transactions on bio-medical engineering. 1997;44(3):136-47. https://doi.org/10.1109/10.554760
  • [105] Plasqui G, Westerterp KR. Physical activity assessment with accelerometers: An evaluation against doubly labeled water. Obesity. 2007;15(10):2371-9. https://doi.org/10.1038/oby.2007.281
  • [106] Crouter SE, Clowers KG, Bassett DR, Jr. A novel method for using accelerometer data to predict energy expenditure. J Appl Physiol. 2006;100(4):1324-31. https://doi.org/10.1152/japplphysiol.00818.2005
  • [107] Oliver M, Schofield GM, Kolt GS. Physical activity in preschoolers: Understanding prevalence and measurement issues. Sport Med. 2007;37(12):1045-70. https://doi.org/10.2165/00007256-200737120-00004
  • [108] Mathie MJ, Coster AC, Lovell NH, Celler BG. Accelerometry: Providing an integrated, practical method for long-term, ambulatory monitoring of human movement. Physiol Measur. 2004;25(2):R1-20. https://doi.org/10.1088/0967-3334/25/2/R01
  • [109] van Hees VT, Gorzelniak L, Leon E, et al., editors. A method to compare new and traditional accelerometry data in physical activity monitoring. World of Wireless Mobile and Multimedia Networks (WoWMoM); 2012; Montreal, QC, Canada.
  • [110] Brond JC, Arvidson D, editors. Sampling frequency affects ActiGraph activity counts. ICAMPAM; 2015; Limerick, Ireland.
  • [111] Strath SJ, Bassett DR, Jr., Swartz AM. Comparison of MTI accelerometer cut-points for predicting time spent in physical activity. Int J Sport Med. 2003;24(4):298-303. https://doi.org/10.1055/s-2003-39504
  • [112] Edwardson CL, Gorely T. Epoch length and its effect on physical activity intensity. Med Sci Sport Exerc. 2010;42(5):928-34. https://doi.org/10.1249/MSS.0b013e3181c301f5
  • [113] Bassett DR, Jr, Rowlands A, Trost SG. Calibration and validation of wearable monitors. Med Sci Sport Exerc. 2012;44(1 Suppl 1):S32-8. https://doi.org/10.1249/MSS.0b013e3182399cf7
  • [114] Jago R, Watson K, Baranowski T, Zakeri I, Yoo S, Baranowski J, Conry K. Pedometer reliability, validity and daily activity targets among 10- to 15-year-old boys. J Sport Sci. 2006;24(3):241-51. https://doi.org/10.1080/02640410500141661
  • [115] Parrish AM, Okely AD, Stanley RM, Ridgers ND. The effect of school recess interventions on physical activity: A systematic review. Sport Med. 2013;43(4):287-99. https://doi.org/10.1007/s40279-013-0024-2
  • [116] RWJF. Robert Wood Johnson Foundation. Recess rules − Why the undervalued playtime may be America’s best investment for healthy kids and healthy schools. 2007.
  • [117] Yildirim M, Arundell L, Cerin E, et al. What helps children to move more at school recess and lunchtime? Mid-intervention results from Transform-Us! cluster-randomised controlled trial. Br J Sport Med. 2014;48(3):271-7. https://doi.org/10.1136/bjsports-2013-092466
  • [118] Ridgers ND, Timperio A, Crawford D, Salmon J. What factors are associated with adolescents’ school break time physical activity and sedentary time? PLoS One. 2013;8(2):e56838. https://doi.org/10.1371/journal.pone.0056838
  • [119] Huberty JL, Siahpush M, Beighle A, Fuhrmeister E, Silva P, Welk G. Ready for recess: a pilot study to increase physical activity in elementary school children. J School Health. 2011;81(5):251-7. https://doi.org/10.1111/j.1746-1561.2011.00591.x
  • [120] Reston VA. Recess for elementary school students [Position paper]. 2006.
  • [121] Van Der Horst K, Paw MJ, Twisk JW, Van Mechelen W. A brief review on correlates of physical activity and sedentariness in youth. Med Sci Sport Exerc. 2007;39(8):1241-50. https://doi.org/10.1249/mss.0b013e318059bf35
  • [122] Hinkley T, Salmon J, Okely AD, Trost SG. Correlates of sedentary behaviours in preschool children: A review. Int J Behav Nutr Phys Act. 2010;7:66. https://doi.org/10.1186/1479-5868-7-66
  • [123] Ridgers ND, Salmon J, Parrish AM, Stanley RM, Okely AD. Physical activity during school recess: A systematic review. Am J Prevent Med. 2012;43(3):320-8. https://doi.org/10.1016/j.amepre.2012.05.019
  • [124] Hinkley T, Crawford D, Salmon J, Okely AD, Hesketh K. Preschool children and physical activity: A review of correlates. Am J Prevent Med. 2008;34(5):435-41. https://doi.org/10.1016/j.amepre.2008.02.001
  • [125] Welk GJ. The youth physical activity promotion model: A conceptual bridge between theory and practice. Quest. 1999;51:5-23. https://doi.org/10.1080/00336297.1999.10484297
  • [126] Haug E, Torsheim T, Sallis JF, Samdal O. The characteristics of the outdoor school environment associated with physical activity. Health Educ Res. 2010;25(2):248-56. https://doi.org/10.1093/her/cyn050
  • [127] Ridgers ND, Graves LE, Foweather L, Stratton G. Examining influences on boy’s and girls’ physical activity patterns: the A-CLASS project. Pediatr Exerc Sci. 2010;22(4):638-50. https://doi.org/10.1123/pes.22.4.638
  • [128] Brusseau TA, Kulinna PH, Tudor-Locke C, Ferry M, van der Mars H, Darst PW. Pedometerdetermined segmented physical activity patterns of fourth- and fifth-grade children. J Phys Act Health. 2011;8(2):279-86. https://doi.org/10.1123/jpah.8.2.279
  • [129] Martinez-Gomez D, Calabro MA, Welk GJ, Marcos A, Veiga OL. Reliability and validity of a school recess physical activity recall in Spanish youth. Pediatr Exerc Sci. 2010;22(2):218-30. https://doi.org/10.1123/pes.22.2.218
  • [130] Ridgers ND, Toth M, Uvacsek M. Physical activity levels of Hungarian children during school recess. Prevent Med. 2009;49(5):410-2. https://doi.org/10.1016/j.ypmed.2009.08.008
  • [131] Sallis JF, Alcaraz JE, McKenzie TL, Hovell MF. Predictors of change in children’s physical activity over 20 months. Variations by gender and level of adiposity. Am J Prevent Med. 1999;16(3):222-9.
  • [132] Sallis JF, Alcaraz JE, McKenzie TL, Hovell MF, Kolody B, Nader PR. Parental behavior in relation to physical activity and fitness in 9-year-old children. Am J Diseas Child. 1992;146(11):1383-8. https://doi.org/10.1001/archpedi.1992.02160230141035
  • [133] Sallis JF, Bowles HR, Bauman A, et al. Neighborhood environments and physical activity among adults in 11 countries. Am J Prevent Med. 2009;36(6):484-90. https://doi.org/10.1016/j.amepre.2009.01.031
  • [134] Sallis JF, Carlson JA, Mignano AM. Promoting youth physical activity through physical education and after-school programs. Adolesc Med: State Art Rev. 2012;23(3):493-510.
  • [135] Sallis JF, Prochaska JJ, Taylor WC. A review of correlates of physical activity of children and adolescents. Med Sci Sport Exerc. 2000;32(5):963-75. https://doi.org/10.1097/00005768-200005000-00014
  • [136] Corder K, van Sluijs EM, Wright A, Whincup P, Wareham NJ, Ekelund U. Is it possible to assess free-living physical activity and energy expenditure in young people by self-report? Am J Clin Nutr. 2009;89:862-870. https://doi.org/10.3945/ajcn.2008.26739
  • [137] Casperson C, Powell K, Christenson G. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Publ Health Rep. 1985;100(2):126-31.
  • [139] Shapiro DR, Malone LA. Quality of life and psychological affect related to sport participation in children and youth athletes with physical disabilities: A parent and athlete perspective. Disability Health J. 2016;9(3):385-91. https://doi.org/10.1016/j.dhjo.2015.11.007
  • [140] Bjornson KF, McLaughlin JF. The measurement of health-related quality of life (HRQL) in children with cerebral palsy. Eur J Neurol : the official journal of the European Federation of Neurological Societies. 2001;8 Suppl 5:183-93. https://doi.org/10.1046/j.1468-1331.2001.00051.x
  • [141] Schwartz C, Andersen EM, Nosek M, Krahn GL. RRTC Expert Panel on Health Status Measurement. Response shift theory: Important implications for measuring quality of life in people with disability. Arch Phys Med Rehab. 2007;88(4):529-36. https://doi.org/10.1016/j.apmr.2006.12.032
  • [142] Holt-Lunstad J, Smith TB, Layton JB. Social relationships and mortality risk: A meta-analytic review. PLoS Med. 2010;7(7):e1000316. https://doi.org/10.1371/journal.pmed.1000316
  • [143] House JS, Landis KR, Umberson D. Social relationships and health. Science. 1988;241(4865):540-5. https://doi.org/10.1126/science.3399889
  • [144] Yang Y, Kozloski M. Change of sex gaps in total and cause-specific mortality over the life span in the United States. Ann Epidemiol. 2012;22(2):94-103. https://doi.org/10.1016/j.annepidem.2011.06.006
  • [145] Yang Y, Kozloski M. Sex differences in age trajectories of physiological dysregulation: Inflammation, metabolic syndrome, and allostatic load. J Gerontol Series A, Biol Sci Med Sci. 2011;66(5):493-500. https://doi.org/10.1093/gerona/glr003
  • [145] Yang YC, McClintock MK, Kozloski M, Li T. Social isolation and adult mortality: The role of chronic inflammation and sex differences. J Health Soc Behav. 2013;54(2):183-203. https://doi.org/10.1177/0022146513485244
  • [146] Cacioppo JT, Hawkley LC. Social isolation and health, with an emphasis on underlying mechanisms. Persp Biol Med. 2003;46(3 Suppl):S39-52. https://doi.org/10.1353/pbm.2003.0063
  • [147] Clark CCT. Is obesity actually non-communicable? Obesity Med. 2017;8:27-8. https://doi.org/10.1016/j.obmed.2017.10.001
  • [148] Sherwood L. Human Physiology: From Cells to Systems. West Virginia. USA: Cengage Learning; 2016.
  • [149] McArdle WD, Katch FI, Katch VL. Essentials of exercise physiology. 2 ed. Philadelphia: Lippincott Williams & Wilkins; 2000.
  • [150] Moe-Nilssen R. A new method for evaluating motor control in gait under real-life environmental conditions. Part 2: Gait analysis. Clin Biomech. 1998;13(4-5):328-35. https://doi.org/10.1016/S0268-0033(98)00090-4
  • [151] Moe-Nilssen R. A new method for evaluating motor control in gait under real-life environmental conditions. Part 1: The instrument. Clin Biomech. 1998;13(4-5):320-7. https://doi.org/10.1016/S0268-0033(98)00089-8
  • [152] Moe-Nilssen R, Helbostad JL. Estimation of gait cycle characteristics by trunk accelerometry. J Biomech. 2004;37(1):121-6. https://doi.org/10.1016/S0021-9290(03)00233-1
  • [153] Rispens SM, Van Dieen JH, Van Schooten KS, et al. Fall-related gait characteristics on the treadmill and in daily life. J Neuroeng Rehab. 2016;13:12. https://doi.org/10.1186/s12984-016-0118-9
  • [154] Rispens SM, Pijnappels M, van Schooten KS, Beek PJ, Daffertshofer A, van Dieen JH. Consistency of gait characteristics as determined from acceleration data collected at different trunk locations. Gait & Posture. 2014;40(1):187-92. https://doi.org/10.1016/j.gaitpost.2014.03.182
  • [155] Rispens SM, Pijnappels M, van Dieen JH, van Schooten KS, Beek PJ, Daffertshofer A. A benchmark test of accuracy and precision in estimating dynamical systems characteristics from a time series. J Biomech. 2014;47(2):470-5. https://doi.org/10.1016/j.jbiomech.2013.10.037
  • [156] Zijlstra W. Assessment of spatio-temporal parameters during unconstrained walking. Eur J Appl Physiol. 2004;92(1-2):39-44. https://doi.org/10.1007/s00421-004-1041-5
  • [157] Zijlstra A, Goosen JH, Verheyen CC, Zijlstra W. A body-fixed-sensor based analysis of compensatory trunk movements during unconstrained walking. Gait & Posture. 2008;27(1):164-7. https://doi.org/10.1016/j.gaitpost.2007.02.010
  • [158] Schwickert L, Becker C, Lindemann U, et al. Fall detection with body-worn sensors A systematic review. Zeitschrift fur Gerontologie und Geriatrie. 2013;46(8):706-19. https://doi.org/10.1007/s00391-013-0559-8
  • [159] Doi T, Hirata S, Ono R, Tsutsumimoto K, Misu S, Ando H. The harmonic ratio of trunk acceleration predicts falling among older people: results of a 1-year prospective study. J Neuroeng Rehab. 2013;10:7. https://doi.org/10.1186/1743-0003-10-7
  • [160] Yack HJ, Berger RC. Dynamic stability in the elderly: identifying a possible measure. J Gerontol. 1993;48(5):M225-30. https://doi.org/10.1093/geronj/48.5.M225
  • [161] Lamoth CJ, Beek PJ, Meijer OG. Pelvis-thorax coordination in the transverse plane during gait. Gait & Posture. 2002;16(2):101-14. https://doi.org/10.1016/S0966-6362(01)00146-1
  • [162] Wolf A, Swift JB, Swinney HL, Vastano JA. Determining Lyapunov exponents from a time-series. Physica D. 1985;16(3):285–317. https://doi.org/10.1016/0167-2789(85)90011-9
  • [163] Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circulat Physiol. 2000;278(6):H2039-49. https://doi.org/10.1152/ajpheart.2000.278.6.H2039
  • [164] Marschollek M, Rehwald A, Wolf KH, et al. Sensor-based fall risk assessment − An expert ‘to go’. Method Inform Med. 2011;50(5):420-6. https://doi.org/10.3414/ME10-01-0040
  • [165] Marschollek M, Rehwald A, Wolf KH, et al. Sensors vs. experts − A performance comparison of sensor-based fall risk assessment vs. conventional assessment in a sample of geriatric patients. BMC Med Informatic Desision Making. 2011;11:48. https://doi.org/10.1186/1472-6947-11-48
  • [166] Marschollek M, Schulze M, Gietzelt M, Lovel N, Redmond SJ. Fall prediction with wearable sensors − An empirical study on expert opinions. Stud Health Technol Informatic. 2013;190:138-40.
  • [167] Rispens SM, van Schooten KS, Pijnappels M, Daffertshofer A, Beek PJ, van Dieen JH. Identification of fall risk predictors in daily life measurements: gait characteristics’ reliability and association with self-reported fall history. Neurorehab Neural Repair. 2015;29(1):54-61. https://doi.org/10.1177/1545968314532031
  • [168] Clark CCT. Profiling movement and gait quality using accelerometry in children’s physical activity: consider quality, not just quantity. Br J Sports Med. 2017. https://doi.org/10.1136/bjsports-2017-098204
  • [169] Clark CCT, Barnes CM, Holton MD, Summers HD, Stratton G. Profiling movement quality and gait characteristics according to body-mass index in children (9–11 y). Hum Mov Sci. 2016;49:291-300. https://doi.org/10.1016/j.humov.2016.08.003
  • [170] Clark CCT, Barnes CM, Summers HD, Mackintosh KA, Stratton G. Profiling movement quality characteristics of children (9-11y) during recess. Eur J Hum Mov. 2018;39:143-60.
  • [171] Clark CCT, Barnes CM, Swindell NJ, et al. Profiling movement and gait quality characteristics in pre-school children. J Mot Behav. 2017:1-9. https://doi.org/10.1080/00222895.2017.1375454
  • [172] Cohen KE, Morgan PJ, Plotnikoff RC, Callister R, Lubans DR. Fundamental movement skills and physical activity among children living in low-income communities: A cross-sectional study. Int J Behav Nutr Phys Act. 2014;11(1):49. https://doi.org/10.1186/1479-5868-11-49
  • [173] Lord S, Rochester L, Baker K, Nieuwboer A. Concurrent validity of accelerometry to measure gait in Parkinsons Disease. Gait & Posture. 2008;27(2):357-9. https://doi.org/10.1016/j.gaitpost.2007.04.001
  • [174] Metcalf B, Henley W, Wilkin T. Effectiveness of intervention on physical activity of children: systematic review and meta-analysis of controlled trials with objectively measured outcomes (EarlyBird 54). BMJ. 2012;345:e5888. https://doi.org/10.1136/bmj.e5888
  • [175] Altenburg TM, Kist-van Holthe J, Chinapaw MJ. Effectiveness of intervention strategies exclusively targeting reductions in children’s sedentary time: a systematic review of the literature. Int J Behav Nutr Phys Act. 2016;13(1):65. https://doi.org/10.1186/s12966-016-0387-5
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-644cdfeb-cd20-4627-9ce2-59d5658a64a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.