Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 29 | 4 |
Tytuł artykułu

Daily rhythm of MnSOD in the C3-CAM intermediate Clusia fluminensis Planch. et Triana

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The C3-CAM intermediate plant Clusia fluminensis under well-watered at low light conditions opens stomata during the light period. In leaf extracts of this plant we have found two copper-zinc superoxide dismutases (CuZnSODs) and two manganese SODs: MnSOD-like protein (MnSOD II) and MnSOD I. Daily rhythm of the MnSOD I shows maximum activity during the afternoon hours and it is accompanied by only a very small tendency to increase in catalase (CAT) activity and lowering of citrate level.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
29
Numer
4
Opis fizyczny
p.369-374,fig.,ref.
Twórcy
autor
  • Institute of Biology, Pedagogical University, Podbrzezie 3, 31-054 Krakow, Poland
autor
  • Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland
autor
  • Institute of Biology, Pedagogical University, Podbrzezie 3, 31-054 Krakow, Poland
  • Institute of Botany, Darmstadt University of Technology, Schnittspahnstrasse 3-5, 64287 Darmstadt, Germany
autor
  • Institute of Biology, Pedagogical University, Podbrzezie 3, 31-054 Krakow, Poland
Bibliografia
  • Aebi H (1984) Catalase in vitro. In: Methods in enzymology, vol 105. Academic, New York, pp 121–126
  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341
  • Bartosz G (1997) Oxidative stress in plants. Acta Physiol Plant 19:47–64
  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287
  • Borland AM, Taybi T (2004) Synchronization of metabolic processes in plants with crassulacean acid metabolism. J Exp Bot 55:1255–1265
  • Borland AM, Griffiths H, Maxwell C, Broadmeadow MSJ, Fordham MC (1996) CAM induction in Clusia minor L. during the transition from wet to dry season in Trynidad: the role of organic acid speciation and decarboxylation. Plant Cell Environ 19:655–664
  • Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
  • Castillo F (1996) Antioxidative protection in the inducible CAM plant Sedum album L. following the imposition of severe water stress and recovery. Oecologia 107:469–477
  • Dat J, Vandenabeele S, Vranová E, van Montagu M, Inzé D, van Breusegem F (2000) Dual action of active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795
  • Desikan R, Mackerness SA-H, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis trancriptome by oxidative stress. Plant Physiol 127:159–172
  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, New York, p 936
  • Herzog B, Grams TEE, Haag-Kerwer A, Ball E, Franco AC, Lüttge U (1999) Expression of modes of photosynthesis (C₃, CAM) in Clusia cruiva Camb. in a cerrado gallery forest transect. Plant Biol 1:357–364
  • Inzé D, van Montagu M (1995) Oxidative stress in plants. Curr Opin Biotechnol 6:153–158
  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature 227:680–685
  • Libik M, Konieczny R, Surówka E, Miszalski Z (2005) Superoxide dismutase activity in organs of Mesembryanthemum crystallinum L. at different stages of CAM development. Acta Biol Cracov Ser Bot 47:199–204
  • Lüttge U (1999) One morphotype, three physiotypes: sympatric species of Clusia with obligate C₃ photosynthesis, obligate CAM and C₃-CAM intermediate behaviour. Plant Biol 1:138–148
  • Lüttge U (2000) Light-stress and crassulacean acid metabolism. Phyton 40:65–82
  • Lüttge U (2004) Ecophysiology of crassulacean acid metabolism (CAM). Ann Bot 93:629–652
  • de Mattos EA, Lüttge U (2001) Chlorophyll fluorescence and organic acid oscillation during transition from CAM to C₃-photosynthesis in Clusia minor L. (Clusiaceae). Ann Bot 88:457–463
  • Maxwell K, Borland AM, Haslam RP, Helliker BR, Roberts A, Griffiths H (1999) Modulation of rubisco activity during the diurnal phases of the crassulacean acid metabolism plant Kalanchoe daigremontiana. Plant Physiol 121:849–856
  • Miszalski Z, Ślesak I, Niewiadomska E, Baczek-Kwinta R, Lüttge U, Ratajczak R (1998) Subcellular localization and stress responses of superoxide dismutase isoforms from leaves in the C₃-CAM intermediate halophyte Mesembryanthemum crystallinum L. Plant Cell Environ 21:169–179
  • Miszalski Z, Kornas A, Gawronska K, Ślesak I, Niewiadomska E, Kruk J, Christian AL, Fischer-Schliebs E, Krish R, Lüttge U (2007) Ecophysiological aspects of mitochondrial MnSOD activity in species of Clusia with obligate C₃-photosynthesis and C₃/CAM intermediate behaviour. Biol Plant 51:86–92
  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410
  • Möllering H (1974) Malat. Bestimmung mit Malat-Dehydrogenase und Glutamat-Oxalacetat-Transaminase. In: Bergmeyer HU (ed) Methoden der Enzymologie. Academic, New York, pp 1636–1639
  • Möllering H (1985) Citrate. Determination with citrate lyase, MDH and LDH. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic, New York, pp 2–12
  • Niewiadomska E, Miszalski Z, Ślesak I, Ratajczak R (1999) Catalase activity during C₃-CAM transition in Mesembryanthemum crystallinum L. leaves. Free Rad Res 31:S251–S256
  • Niewiadomska E, Karpinska B, Romanowska E, Ślesak I, Karpinski S (2004) A salinity-induced C₃-CAM transition increases energy conservation in the halophyte Mesembryanthemum crystallinum L. Plant Cell Physiol 45:789–794
  • Roberts A, Borland AM, Griffiths H (1997) Discrimination processes and shifts in carboxylation during the phases of crassulacean acid metabolism. Plant Physiol 113:1283–1292
  • Salin ML, Bridges SM (1981) Localization of superoxide dismutases in chloroplasts from Brassica campestris. Z Pflanzenphysiol 99:37–45
  • Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101:7–12
  • Schröder Ch (2000) Vergleich von Isoenzymmustern verschidener Vertreter der Gattung Clusia L.: taxonomischer Vergleich und Versuch einer Stammbaumerstellung. University of Technology of Darmstadt, Germany, pp 1–35
  • Streller S, Krömer S, Wingsle G (1994) Isolation and purification of mitochondrial Mn-superoxide dismutase from the gymnosperm Pinus sylvestris L. Plant Cell Physiol 35(6):859–867
  • Ślesak I, Miszalski Z (2003) Superoxide dismutase-like protein from roots of the intermediate C₃-CAM plant Mesembryanthemum crystallinum in in vitro culture. Plant Sci 164:497–505
  • Ślesak I, Miszalski Z, Karpinska B, Niewiadomska E, Ratajczak R, Karpinski S (2002) Redox control of oxidative stress responses in the C₃-CAM intermediate plant Mesembryanthemum crystallinum. Plant Physiol Biochem 40:669–677
  • Ślesak I, Libik M, Karpinska B, Karpinski S, Miszalski Z (2007) The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochim Pol (in press)
  • Van Breusegem F, Vranová E, Dat JF, Inzé D (2001) The role of active oxygen species in plant signal transduction. Plant Sci 161:405–414
  • Winter K, Smith JAC (1996) Crassulacean acid metabolism. Current status and perspectives. In: Winter K, Smith JAC (eds) Crassulacean acid metabolism. Biochemistry, ecophysiology and evolution. Springer, Berlin, pp 389–426
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-63f91b60-1cb0-41df-8d31-e4f5abf1d8ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.