Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
This study evaluated the ability of a hydrothermal time model (HTT) to describe the kinetics of watermelon (Citrullus vulgaris cv. ‘Crimson sweet’) seed germination under different temperatures (T) and water potentials (ψ) and also to determine the cardinal temperatures of watermelon. Results indicated that ψ influenced germination rate and germination percentage. For this seed lot, cardinal temperatures were 10℃ for Tb, 28.34℃ for To and 40.8℃ for Tc in the control (0 MPa) treatment. There was a decrease in hydrotime constant (θH) when T was increased to To and then remained constant at supraoptimal temperatures (30 MPah⁻¹). Also, at temperatures above To, ψb(50) values increased linearly with T. The kT value (the slope of the relationship between ψb(50) and T exceeds To) of this seed lot was calculated as 0.076 Mpa℃ h⁻¹. Results this study show that when the HTT model is applied, it can accurately describe ψb(g) and the course of germination around Ts (R² = 0.82). Moreover, the ψb(50) was estimated to be -0.96 MPa based on this model. Consequently, the germination response of watermelon for all Ts and ψs can be adequately described by the HTT model and enabling it to be used as a predictive tool in watermelon seed germination simulation models.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
Article: 1738 [8 p.], fig.,ref.
Twórcy
autor
- Department oi' Plant Molecular Physiology, Genetics and Agricultural Biotechnology Institute of Tabarestan and Sari, Agricultural Sciences and Natural Resources University, P.O. Box 48131-81344, Sari, Iran
autor
- Department of Horticultural Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
autor
- Department of Horticultural Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
autor
- Department oi' Plant Molecular Physiology, Genetics and Agricultural Biotechnology Institute of Tabarestan and Sari, Agricultural Sciences and Natural Resources University, P.O. Box 48131-81344, Sari, IranDepartment oi' Plant Molecular Physiology, Genetics and Agricultural Biotechnology Institute of Tabarestan and Sari, Agricultural Sciences and Natural Resources University, P.O. Box 48131-81344, Sari, Iran
autor
- P. 0. Box 7. Miki-cho post office, Ikenobe 301 1-2, Kagawa-ken 761-0794, Japan
Bibliografia
- Alvarado V, Bradford KJ (2002) A hydrothermal time model explains the cardinal temperatures for seed germination. Plant, Cell Environ 25:1061–1069. doi:10.1046/j.1365-3040.2002.00894.x
- Atashi S, Bakhshandeh E, Mehdipour M, Jamali M, Teixeira da Silva JA (2014a) Application of a hydrothermal time seed germination model using the Weibull distribution to describe base water potential in zucchini (Cucurbita pepo L.). J Plant Growth Regul. doi:10.1007/s00344-014-9452-y
- Atashi S, Bakhshandeh E, Zeinali Z, Yassari E, Teixeira da Silva JA (2014b) Modeling seed germination in Melisa officinalis L. in response to temperature and water potential. Acta Physiol Plant 36:605–611. doi:10.1007/s11738-013-1436-1
- Bakhshandeh E, Atashi S, Hafea-Nia M, Pirdashti HA (2013) Quantification of the response of germination rate to temperature in sesame (Sesamum indicum). Seed Sci Technol 41:469–473
- Baskin CC, Baskin JM (2014) Seeds: ecology, biogeography, and evolution of dormancy and germination. Academic Press, San Diego, p 1600
- Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H (2013) Seeds: physiology of development, germination and dormancy, 3rd edn. Springer, New York, p 407
- Bradford KJ (1990) A water relations analysis of seed germination rates. Plant Physiol 94:840–849. doi:10.1104/pp.94.2.840
- Bradford KJ (2002) Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Sci 50:248–260. doi:10.1614/0043-1745(2002)050[0248:AOHTTQ] 2.0.CO;2
- Bradford KJ, Still DV (2004) Applications of hydrotime analysis in seed testing. Seed Technol 26:75–85
- Dahal P, Bradford KJ (1990) Effects of priming and endosperm integrity on seed germination rates of tomato genotypes II. Germination at reduced water potential. J Exp Bot 41:1441–1453. doi:10.1093/jxb/41.11.1441
- Dahal P, Bradford KJ (1994) Hydrothermal time analysis of tomato seed germination at suboptimal temperature and reduced water potential. Seed Sci Res 4:71–80. doi:10.1017/S0960258507383141
- Demir I, Mavi K (2004) The effect of priming on seedling emergence of differentially matured watermelon (Citrullus lanatus (Thunb.) Matsum and Nakai) seeds. Sci Hortic 102:467–473. doi:10.1016/j.scienta.2004.04.012
- Garcia AL, Recasens J, Forcella F, Torra J, Royo-Esnal A (2013) Hydrothermal emergence model for ripgut brome (Bromus diandrus). Weed Sci 61:146–153. doi:10.1614/WS-D-12-00023.1
- Grundy A, Phelps K, Reader R, Burston S (2000) Modelling the germination of Stellaria media using the concept of hydrothermal time. New Phytol 148:433–444. doi:10.1046/j.1469-8137. 2000.00778.x
- Gummerson R (1986) The effect of constant temperatures and osmotic potential on the germination of sugar beet. J Exp Bot 41:1431–1439. doi:10.1093/jxb/41.11.1431
- Kebreab E, Murdoch AJ (1999) Modelling the effects of water stress and temperature on germination rate of Orobanche aegyptiaca seeds. J Exp Bot 50:655–664. doi:10.1093/jxb/50.334.655
- Kebreab E, Murdoch AJ (2000) The effect of water stress on the temperature range for germination of Orobanche aegyptiaca seeds. Seed Sci Res 10:127–133. doi:10.1017/S0960258500000131
- Kurtar ES (2010) Modelling the effect of temperature on seed germination in some cucurbits. African J Biotech 9:1343–1353
- Maynard DN, Hochmuth GJ (2007) Knott’s handbook for vegetable growers, 5th edn. Wiley, USA, p 630
- Rowse HR, Finch-Savage WE (2003) Hydrothermal threshold models can describe the germination response of carrot (Daucus carota) and onion (Allium cepa) seed populations across both sub- and supra-optimal temperatures. New Phytol 158:101–108. doi:10. 1046/j.1469-8137.2003.00707.x
- SAS Institute (2004) SAS/STAT user’s guide. SAS Institute Inc., Cary
- Schutte BJ, Regnier EE, Harrison SK, Schmoll JT, Spokas K, Forcella F (2008) A hydrothermal seedling emergence model for giant ragweed (Ambrosia trifida). Weed Sci 56:555–560. doi:10.1614/WS-07-161.1
- Singh S, Singh P, Sanders DC, Wehner TC (2001) Germination of watermelon seeds at low temperature. Rep Cucurbit Genet Coop 24:59–64
- Vleeshouwers L, Kropff M (2000) Modelling field emergence patterns in arable weeds. New Phytol 148:445–457. doi:10. 1046/j.1469-8137.2000.00773.x
- Wang R (2005) Modeling seed germination and seedling emeregence in winterfat (Krascheninnikovia lanata (Pursh) A.D.J. Meeuse & Smit): physiological mechanisms and ecoligical relevance. Ph.D. thesis, University of Saskatchewan, p 190
- Watt MS, Xu V, Bloomberg M (2010) Development of a hydrothermal time seed germination model which uses the Weibull distribution to describe base water potential. Ecol Modelling 221:1267–1272. doi:10.1016/j.ecolmodel.2010.01.017
- Watt MS, Bloomberg M, Finch-Savage WE (2011) Development of a hydrothermal time model that accurately characterises how thermoinhibition regulates seed germination. Plant, Cell Environ 34:870–876. doi:10.1111/j.1365-3040.2011.02292.x
- Zhang H, Irving L, Tian Y, Zhou D (2012) Influence of salinity and temperature on seed germination rate and the hydrotime model parameters for the halophyte, Chloris virgata, and the glycophyte, Digitaria sanguinalis. South African J Bot 78:203–210. doi:10.1016/j.sajb.2011.08.008
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-62030b5f-7be3-4abb-b2aa-0b8e11743238