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The possibility of using gas sensors in the portable electronic nose to detect the proportion of

acorns colonized by Ciboria batschiana was examined. The present research has demonstrated

that for such a task a portable electronic nose can be used as fungus−infected acorn tissue emits

different volatile organic compounds from healthy tissue. However, the gas sensors used in com−

mercially available the PEN3 electronic nose are not selective, therefore the measurements did

not provide accurate information about the chemical composition of the odor. It was found that

the electronic nose sensors responded to the presence of the fungus to different degrees. There

was a difference in the response of the sensors to the presence of different compositions of the

measured volatile compounds at different percentages for acorns colonized by C. batschiana.

The correlation coefficients between acorn infection level and the response of the sensors were

found to be statistically significant. The R2 coefficient of the linear regression model reached 

a value of 0.19 in the cases where the slope coefficients of three predictors were statistically sig−

nificant.

Introduction

The concept of the electronic nose (Persaud and Dodd, 1982; Gardner and Bartlett, 1994; Nagle

et al., 1998) involves the application of a set of nonspecific gas sensors, usually with an overlapping

range of gas detection, with machine learning pattern recognition algorithms. Several applications

for such a non−invasive and rapid diagnostic tool have been proposed. Multiple research papers

address applications of electronic noses, focusing on forestry and agriculture (Wilson, 2013;

Cellini et al., 2017; Ray et al., 2017; Cui et al., 2018; Wilson, 2018; Cheng et al., 2021). The iden−

tification of fungal species by electronic noses was reported by Mota et al. (2021). The odors of

various fungus−infected seeds were investigated using electronic noses, e.g., in cereal grain samples
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(Paolesse et al., 2006; Presicce et al., 2006), rice (Gu et al., 2019; Men et al., 2022), rapeseed (Gancarz

et al., 2017a, b) and wheat (Lin et al., 2022). Recently, the detection of fungal infection of silver

fir seeds was investigated using the PEN3 electronic nose (Borowik et al., 2022a).

However, the electronic nose (E−nose) cannot be the only tool for the early detection of all

plant diseases, even with its high level of efficacy, as other highly reliable molecular biology

methods should always be used in tandem. Rather, the E−nose should allow for field pre−screening

and if it indicates the presence of pathogens then it should be further confirmed by DNA analyses

(PCR, qPCR or NGS) for example.

In recent years, many technological advances have been made in agriculture, including 

E−noses, for which new applications have been found. Fruits and vegetables are increasingly

sold, sorted and labeled, making it easier for customers to identify the quality of the product.

Therefore, a need arose to develop sorting with easy−to−use and cost−effective tools. According

to the latest state of the art food technology, E−noses can be used in food quality control systems,

for example, for Capsicum annuum L. peppers (Rasekh et al., 2022). Using this method, it is possible

to reliably separate sweet and hot peppers based on olfactory parameters and to develop sorting

machines based on olfactory characteristics (Rasekh et al., 2022). An E−nose applying nine 

MOS sensors was also used to test different potato varieties for which the carbohydrate content,

sugar content and hardness of the potatoes were measured (Khorramifar et al., 2022). Overall,

the E−nose can be used as a rapid and non−destructive method for detecting different potato

varieties. Researchers in the food industry find this method extremely useful for selecting the

desired product and samples (Khorramifar et al., 2022). Volatile compounds in coffee green

beans varieties could also be tested with E−noses. Chlorogenic acids, trigonelline, caffeine, total

lipids, total protein and color parameters were measured in Coffea robusta L. Linden in China.

Seventy−nine volatile compounds were confirmed by Headspace Solid−Phase Microextraction

coupled to Gas Chromatography−Mass Spectrometry (HS−SPME/GC−MS) and showed signifi−

cant differences among all tested coffee varieties (Dong et al., 2015).

Agriculture and forestry is an important source of economic development for many com−

munities. However, diseases affecting crops, including forest plantations, significantly reduce

primary production. It is becoming increasingly difficult for plant pathologists to detect disease

symptoms that are masked by pesticide use (Chang et al., 2014). Infected asymptomatic plants

carry a variety of plant pathogens such as bacteria, fungi and viruses from nursery to crop, country

to country or continent to continent in international trade. Therefore, a variety of new approaches

should be used to solve this problem in order to, for example, detect infected seeds or seedlings

more quickly.

Polish nurseries produce about 800 million seedlings annually, most of which are pine seedlings

(58%) while birch and oak represent 10% and 7%, respectively. Due to the irregular fruiting periods

of forest trees, continuous long−term storage of propagation material in nurseries is needed. This

is very important, particularly for oaks, which produce seeds every four to eight years (Schermer

et al., 2019). In most cases, acorns are collected in barrels in the years of harvesting, where they

are stored for the following years. Unfortunately, infected acorns could be a source of infection

for neighboring ones. Detection of acorn pathogens can be done through visual inspection which

can be automated using computer visual methods (Przybyło and Jabłoński, 2019). However,

such an approach requires inspection of each acorn and would be time intensive. A more promising

method could be to monitor the health status of stored acorns by examining the odor emissions.

The idea being that pathogenic fungi as well as healthy and infected plant tissues should have

different odors. Undoubtedly, the human nose is not sufficient to detect decomposition odors

in the early stages, therefore, much more sensitive sensors are needed. Consequently, artificial
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E−noses need to be built and appropriate applications, such as machine learning in the context

of artificial intelligence, need to be used to analyze the results. Ideally, it would be possible to

verify not only whether infection of acorns has occurred but also to what extent. Such information

is critical for forest nurseries when considering a particular seed lot for spring sowing in nurseries.

If the sowing fails, unnecessary costs are incurred, moreover, fungal diseases are introduced into

the soil causing further losses even if new, healthy seeds are sown. To date, there are no other

methods for evaluating acorns stored in barrels, except through visual inspection. Therefore, testing

the odor of spoiled seeds is a novel innovation. In the tests conducted for this research we used

combinations with different amounts of rotten seeds.

Acorns are most frequently and severely damaged by the fungus Ciboria batschiana (Zopf)

N.F. Buchw. with thermotherapy most commonly applied to treat the infection (Knudsen et al.,
2004). A 2.5−hour bath in water at 41°C was developed to rid the surface of acorns of pathogens,

particularly of the fungus C. batschiana, which mummifies these seeds, i.e., turns them into black

sunken shells (Knudsen et al., 2004). After the seeds are bathed and dried (but not ‘desiccated’,

the humidity should not fall below 40%) another treatment follows called fungicide dressing.

Acorns are surrounded by a mixture of fungicides and thus protected from fungal diseases

(Knudsen et al., 2004). After these treatments, the acorns are placed in containers – 110 l barrels

with drainage tubes and again placed in cold storage (–3°C). However, the barrels may contain

secondary infections caused, for example, by molds or oomycetes (Knudsen et al., 2004). The

risk of infection increases with the length of storage time as the seed is weakened by a sharp

decline in moisture content. Pesticide use can also affect seed viability. Conversely, spores or

spore−forming organs of pathogens may survive protective treatment or enter stored seeds at 

a later stage of storage.

The main objective of the research conducted was to test a new application of an E−nose

for forest seeds especially during storage. In our studies we focused on distinguishing between

healthy and damaged oak seed lots based on odor differences. We made a series of measurements

with the E−nose to determine the correlation between the infection status of the samples and

the sensory response patterns recorded. To the best of our knowledge, this was the first attempt

to assess the infection status of acorns in seed lots using an E−nose. In these preliminary studies

we also used molecular methods to identify the fungus C. batschiana on the collected acorns that

resulted in cotyledon rot and embryo damage which was an additional objective. To achieve this

goal, DNA analysis was performed using specific primers and a qPCR technique to confirm the

causal agent of the disease symptoms.

Materials and methods

SAMPLES OF ACORNS. Acorns were collected in May 2022 in Chojnów Forest District (52°05�54.6�

N, 20°52�10.7� E). We collected about 2 kg of acorns that had fallen spontaneously to the ground

from English oak Quercus robur L. aged 75 years. The acorns were transported to the laboratory

at the Forest Research Institute where they were carefully washed off soil and organic residues.

Then the washed samples were sorted into two categories: (i) healthy acorns (without visible

symptoms of fungal infection) and (ii) acorns with visible symptoms of infection by C. batschiana.

There were a total of 42 healthy ungerminated acorns and 30 acorns infected with C. batschiana
(Fig. 1). The number of acorns used for measurements was much smaller than the total number

of collected acorns as we decided to exclude acorns which developed infestation symptoms dif−

ferent than those of C. batschiana from the analysis as well as those that had already germinated

or were desiccated.
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CIBORIA BATSCHIANA INFECTION

Visual identification by symptoms. All collected acorns were carefully sorted for the occurrence of

symptoms typical of C. batschiana infection. C. batschiana is the main cause of black rot of Q. robur
acorns and the cause of serious economic losses during storage (Kowalski, 1999). Infection is

thought to occur on fruits after falling to the ground but before harvesting through ascospores

issued from apothecia formed during the winter on infected fruits (Delatour and Morelet, 1979).

The first symptom of the disease is the appearance of yellow−orange spots with a brown border

which merge over time on the surface of the cotyledons of infected acorns. The cotyledons then

darken, shrink and wrinkle eventually becoming completely black and dry (Kowalski, 1999).

Based on the symptoms described above, a group of C. batschiana−infected acorns was selected

and then several seeds were genetically analyzed to confirm the presence of the fungus in the

infected tissues.

MOLECULAR IDENTIFICATION OF PATHOGENS. To confirm the presence of C. batschiana infection

on acorns, ten healthy and ten infected acorns were randomly selected for qPCR analysis. Genomic

DNA was extracted from acorns using a NucleoSpin Plant II kit (Macherey−Nagel, Düren,

Germany) following the manufacturer’s instructions.

For each sample, DNA was eluted in 50 µL of H2O and the extracted DNA was stored at –20°C.

Primers F218 5’−TTGTAGAACTCCTAGTCGTA−3’ and R347 5’−ACCGAGATTCTC−

GAATTTGTCTTTA−3’ and probe T2696 FAM−ATCTCTAATTGTTGTCGAACAGATGGT−

−HBQ1 against the Hsp60 gene were used for identification of C. batschiana (Lamarche et al., 2015). 

PCR primers were synthesized by Sigma−Aldrich (Milwaukee, WI, USA). Real−time PCR

was performed in a total volume of 20 µl and consisted of 10 µl LuminoCt qPCR Ready Mix

(Sigma−Aldrich, St. Louis, MO, USA), 2 µl forward and 0.5 µM reverse primers, 1 µl, 0.2 µM probe,

2 µL DNA and 7 µl water. PCR amplification was performed using the 7500 Real−Time PCR

system (ThermoFisher Scientific, Waltham, MA, USA). Thermocycling conditions consisted of

initial denaturation at 95°C for three minutes followed by 40 cycles at 95°C for 30 seconds and

60°C for 90 seconds. Fluorescence was measured at the end of the extension step for each cycle.

Ct values below 35 were considered a positive detection reaction. Negative controls (no DNA) did

not produce amplification products (Lamarche et al., 2015) for 40 cycles. The possible presence

of inhibitors in the analyzed samples was verified by amplification of ITS in Q. robur using the

forward primer 5’−ACCTGCACAGCGGAACG−3’ and the reverse primer 5’−ATTCATTAGA−

CGCCGACCG−3’ as described in a previous paper (Oszako et al., 2021). All reactions were

repeated twice.

Ten healthy acorns and ten acorns with visible symptoms of C. batschiana infection were used

for qPCR analysis. The qPCR analysis performed with the Hsp60 primers specific for C. batschiana

Fig. 1.

Samples of acorns. Healthy acorns on the left.
Colonized by C. batschiana on the right
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yielded positive results (Ct 28.17−32.54) for all analyzed DNA samples isolated from acorns with

visible symptoms of infection. None of the DNA samples isolated from healthy acorns yielded

a positive result for C. batschiana (Ct>40). To rule out the possibility that DNA extracted from

acorns contained inhibitors, qPCR analysis was performed using primers specific for Q. robur.

The qPCR yielded positive results for all samples analyzed (Ct 16.71−20.06). This indicates that

the extracted DNA was free of inhibitors and a positive signal indicated infection of acorns with

C. batschiana (Table 1). In this way, the genetic analyses proved that the visual selection of acorns

was performed correctly, i.e., they were divided accurately into healthy and diseased (infected

with C. batschiana) acorns.

MEASUREMENTS BY THE ELECTRONIC NOSE

PEN3 electronic nose device. The PEN3 E−nose used in our experiment has been successfully

used in several research projects in forestry and agriculture on fungal infection. Zhou and Wang

(2011) used the E−nose to identify rice infection by Nilaparvata lugens (Stĺl). Baietto et al. (2013,

2015) detected root rot in shade tree species. Biondi et al. (2014) reported the detection of potato

brown rot and ring rot. Liu et al. (2018) reported studies on the fungal contamination in peaches.

Guo et al. (2020) reported classification for Penicillium expansum Link spoilage in apples. Our team

reported results of pathogen detection on ash saplings Hymenoscyphus fraxineus (Borowik et al.,
2021d) and fir seeds (Borowik et al., 2022a).

The E−nose system PEN3 used in our work was commercially available and widely used

in the laboratories (Airsense Analytics GmbH, Schwerin, Germany) with Airsense WinMuster

1.6.2 software. It uses ten high−temperature metal oxide sensors as detection units. All sensors

Ct value
C. batschiana Q. robur

Sample repeat 1 repeat 2 repeat 1 repeat 2

Negative control >40 >40 >40 >40

Healthy 1 >40 >40 18.35 17.81

Healthy 2 >40 >40 19.38 44732

Healthy 3 >40 >40 17.44 16.89

Healthy 4 >40 >40 18.39 19.45

Healthy 5 >40 >40 16.71 17.32

Healthy 6 >40 >40 17.02 17.88

Healthy 7 >40 >40 18.87 17.41

Healthy 8 >40 >40 16.89 17.62

Healthy 9 >40 >40 19.91 18.52

Healthy 10 >40 >40 18.12 19.04

Infected 1 29.43 29.28 17.82 16.92

Infected 2 30.18 29.87 20.01 19.57

Infected 3 28.69 29.41 18.76 19.41

Infected 4 31.52 30.96 19.16 18.33

Infected 5 32.08 31.62 16.98 17.72

Infected 6 31.72 32.54 19.36 18.63

Infected 7 28.17 28.98 17.75 17.01

Infected 8 30.32 29.48 18.33 19.37

Infected 9 31.48 31.44 18.69 17.81

Infected 10 32.31 31.72 17.11 18.56

Table 1.

qPCR analysis of acorn samples
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have a very wide range of detectable gasses with the list of PEN3 E−nose sensors and their target

gasses presented in Table 2.

The instrument also has efficient air pumps that transport ambient air and odor samples

to the sensors. The ambient air is purified by an activated charcoal filter. The signal recorded

by the sensors is the conductance of the sensors in the ambient air divided by the values in the

reference gas (clean air).

Measurement procedure. The measurement procedure was carried out according to the work

described in our previous publications (Borowik et al., 2021c). The experiment was performed

using the PEN3 E−nose which was turned on at least one hour before the start of measurement

taking to warm up the sensors properly. To ensure that no particles from prior measurements

remained in the sensor chamber, the PEN3 automatically purged the sensors with filtered air

for 180 seconds before each new measurement. The instrument then measured the level of the

sensors’ reference point in the presence of clean air (G0) and after which it recorded the sensors’

response to the constant gas flow in the headspace of the measured sample during the next 120

seconds. The signals from the sensors recorded by the software were G/G0. The conductivity

of the sensors (G) during the measurement were divided by the conductivity of the ambient air G0.

In addition, all measurements were performed in a laminar flow booth (Telstar, Bio II Advance)

at 21°C with the air supply turned on. This made it possible to maintain controlled temperature

and humidity conditions throughout the experiment.

Acorn samples were stored in 200 mL jars at room temperature (Fig. 2). Four experimental

variants, as listed in Table 3, and three replicates for each variant were chosen for the study.

Fig. 2.

Prepared acorn samples during PEN3 electronic nose
measurement

Sensor Main Gas Targets

W1C Aromatic organic compounds

W5S Very sensitive, broad range sensitivity, reacts to nitrogen oxides, very sensitive to negative 

signals

W3C Ammonia, also used as sensor for aromatic compounds 

W6S Detects mainly hydrogen gas

W5C Alkanes, aromatic compounds and nonpolar organic compounds 

W1S Sensitive to methane. A broad range of organic compounds detected

W1W Detects inorganic sulfur compounds, e.g., H2S. Also sensitive to many terpenes and 

sulfur−containing organic compounds

W2S Detects alcohol, partially sensitive to aromatic compounds, broad range 

W2W Aromatic compounds, inorganic sulfur and organic compounds

W3S Reacts to high concentrations of methane (very selective) and aliphatic organic compounds

Table 2.

Sensor array details in PEN3 electronic nose device as reported in the menu of options of the electronic
nose software



Piotr Borowik et al.668

On each day of the experiment, after the measurements were completed, all acorns were

removed from the jars, carefully wiped so that no fragments of infected tissue remained on the

surface of the healthy seeds and then randomly placed back into the jars, maintaining the pro−

cedure described above. Samples prepared in this manner were left overnight to collect volatile

odorants components (VOCs). The air above the seeds was collected by inserting a PEN3 

E−nose tube into prepared holes in the lid of the jar. Between measurement collection times, the

jars were closed and the holes were sealed with parafilm. Three jars of samples of each variant

(as listed in Table 3) were prepared for measurements.

One to three series of measurements were performed daily for three weeks. In each series,

12 samples were measured (4 variants with 3 independent samples of each). Before the start of

each series, a random number generator was used to determine the order of the measurements.

When more than one series of measurements were made per day, the holes in the jar lids were

taped with parafilm immediately after the measurement to allow the accumulation of VOCs

from the seeds. A total of 20 measurement series were performed throughout the experiment.

DATA ANALYSIS. In analyzing the data, we addressed the problem of evaluating the status of path−

ogenic infection in stored Q. robur acorns. We used a fixed number of acorns (Ntotal ) with different

proportions of acorns with visible infection symptoms (Ninfected ) as measurement samples using

the proportion Ninfected/Ntotal as an indicator of sample status.

To explain the analysis of the data collected by the PEN3 E−nose, we show in Figure 3 

a diagram with an example of the sensors responses during measurement collection procedures.

The data was collected over 120 seconds starting from the time the sensors were exposed to the

measured odor. The response level of each sensor at the end of the observation period was extracted

and used as a feature for further statistical data analysis. Averaging over the last 10 seconds was

performed to reduce noise.

The collected data was analyzed and visualized using statistical methods. The Pearson cor−

relation coefficient between each sensor response at the end of the observation period and the

Variant Variant description

0/6 6 healthy acorns

1/6 1 infected and 5 healthy acorns (6 in total)

3/6 3 infected and 3 healthy acorns (6 in total)

6/6 6 infected acorns

Table 3.

Variants of numbers of infected and healthy acorns used in measured samples

Fig. 3.

An example of the PEN3 electronic nose sen−
sor response captured during one series of
sample measurements. The colored region in
the last phase of the observation time indicates
the region from which modeling features are
extracted as the average value of the sensor
response. The sensor's symbols are listed in
the figure legend. Description of the sensor's
target gases are available in Table 2
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percentage of infected acorns in the sample were calculated. It must be admitted here that the

distribution of the collected data did not pass the statistical test for normal distribution. One of

the reasons was that we could collect only a limited sample of data with discrete proportions of

healthy and infected acorns in a sample along with the proportion being confined to the [0,1]

range. We, however, decided to follow these preliminary analyses despite not fulfilling these

conditions. 

Linear regression models were calculated with the proportion of infected acorns in the

sample as the dependent variable and sensor responses as independent variables (predictors).

Different numbers of predictors used in the models were tested, and for a selected number, the

model with the maximum R2 value was chosen. The p−value of each regression coefficient was

calculated to estimate whether the predictors were non−zero at p<0.05.

The Mallows statistic Cp (Mallows, 1973; Gilmour, 1996) was also calculated to address the

problem of model selection and to assess the fit of the estimated regression models. The statis−

tic is defined as Cp=SSEp/s2–N+2(p+1), where N is the total number of available predictors, 

p is the number of predictors in the candidate model, SSE is the sum−of−squares error for a model

with p parameters and s2 is the mean squares error for the full model. This statistical analysis

was proposed by Mallow as a criterion for selecting among many alternative subset regressions and

is often used as a stopping rule of stepwise regression when the predictors are added to a series

of models and their performance is compared. The model with the lowest Cp value, approximately

equal to p+1, is considered the most ‘adequate’ model.

Data processing and statistical analysis of the data was performed with SAS 9.4 software

(SAS Institute, Cary, NC, USA) using the SAS Enterprise Guide user interface and SAS/Stat

procedures (Cody, 2011). PROC CORR was used to calculate Pearson correlation coefficients

with corresponding p−values. PROC REG was used to estimate linear regression coefficients

with the corresponding p−values and R2 values, model selection and Cp statistics. In evaluating

the analysis, a p−value below 0.05 was considered an indicator of a statistically significant result.

Results

CORRELATION ANALYSIS OF DATA COLLECTED BY ELECTRONIC NOSE MEASUREMENTS. The VOCs

in a sample containing healthy and infected acorns consist of a mixture of chemical compounds.

E−nose sensors respond nonlinearly to the presence of gases as the sensors used are not selective

therefore the measurement does not provide accurate information about the chemical composition

of the odor. Typically, all sensors respond to the presence of a sample, however, to varying degrees.

Figure 4 shows the Pearson correlation coefficient between the sample status variable and

each sensor response. The absolute value of the correlation coefficient is plotted whether it is

a positive or negative value. This is due to the fact that we are concerned with the difference in

sensor response to the presence of different compositions of measured VOCs between different

statuses of pathogen−infested acorns in our analysis.

As can be seen in Figure 4, the correlation coefficients between acorn infection status and

sensor response are in the range of 0.2 to 0.3 for sensors W1S, W1W and W2W. The correlation

coefficients calculated for these sensors have an associated p−value below 0.02 indicating that

these correlations, although rather weak, are nevertheless statistically significant. For other sen−

sors, the correlation coefficient is smaller with p>0.05. However, such a result does not exclude

a correlation between the infection status and the response of the sensor if this correlation is not

linear.
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TRENDS IN ELECTRONIC NOSE SENSOR’S RESPONSE. The main features of the response distribution

of the W1S sensor are presented in Figure 5 grouped according to the different proportion levels

of infected and healthy acorns in the samples. We chose this sensor because, as we showed in

Figure 4, the response of this sensor had the strongest correlation with the infection status of

the acorns.

In Figure 5 it can be seen that the variability of the data for each category of infection status

show quite a wide range which is understandable given the natural variability of both healthy

and infected biological samples. Nevertheless, a trend in sensor response can be detected with

r=–0.291
p=0.004

–0.249
0.014

–0.246
0.016

–0.19
0.06 –0.16

0.11

–0.12
0.24 –0.09

0.36

–0.035
0.73

–0.030
0.77

–0.017
0.87

Fig. 5.

The W1S sensor's response at the end of the observation time (predictor value) versus the number of infect−
ed acorns in the measured sample. The proportion of acorns with symptoms of pathogenic infection to the
total number of acorns in a sample is indicated in the labels. The dashed line represents a linear regression
fit. The p−values of the regression coefficients are below 0.004 and the model's R2 of 0.085

Fig. 4.

Pearson correlation coefficient between the number of infected acorns in a measured sample and the sensor
response magnitude at the end of the observation time. The absolute value of the correlation coefficient is
plotted. The magnitude of the correlation coefficient and corresponding p−value is indicated above the bars.
The blurred bars indicate that the correlation coefficient is not statistically significant at the level p<0.05
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the observed change in the ratio of infected to healthy acorns. This trend exhibits statistical sig−

nificance of the slope parameter in the linear model with a p−value of 0.004. Analysis of the coef−

ficient of determination (R2) in the model shows that the measurements of the single−variable

model using the W1S sensor data explains about 9% of the data variability. 

LINEAR REGRESSION ANALYSIS. Figure 6 compares the R2 of a series of linear regression models

using responses collected from multiple PEN3 sensors as predictors. The fusion of data from

different sensors was tested and the model that maximized R2 was selected for a given set of

predictors.

In this analysis, we applied two approaches to determine the best model in terms of the

number of predictors used. Firstly, Mallow’s Cp statistics are calculated and the model with a

minimum in this parameter could be selected. This gives the model using as predictors data col−

lected by six PEN3 sensors with a corresponding R2 of 0.26. Another approach is to examine

the slope coefficients for the predictors and choose the models where the coefficients are sta−

tistically significant for all factors used. This approach suggests that we should choose a model

with data collected from the three PEN3 sensors, W1S, W2S and W3C. This model reached the

R2 value of 0.19.

In Figure 7 we present a scatter−plot chart comparing predictions of a linear regression

model versus the actual value of sample infection status (dependent variable). The model using

predictor responses of six sensors is chosen for which the Mallow’s Cp coefficient reaches a min−

imal value as presented in Table 4. As can be observed, the trend of data points is rather weak

and there is a high level of deviation in data points from the diagonal. This result with low sta−

tistical significance reflects the presented above R2 value which reaches the presented model

magnitude of 0.24.

Fig. 6.

The coefficient of determination (R2) of the linear regression models built with various numbers of predic−
tors. The model with a maximum magnitude of the R2 is selected for a given number of features. The list of
sensors from which data is used is indicated. The models, for which the regression coefficients for all factors
are statistically significant at the level of p<0.05, are indicated as full−color bars. Line represents a trend of
Mallow's Cp statistics. The list of sensors from which predictors values were extracted and magnitudes of pre−
sented coefficients are presented in Table 4
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Discussion

DETECTION OF ACORN AND OAK PATHOGENS BY VOLATILE ORGANIC COMPOUNDS. Multiple reported

VOCs have been found emitted from leaves, bark and acorns of Quercus species (Burlacu et al.,
2020). However, most of this research focuses on the analysis of healthy organism samples driv−

en by application in various industries.

Studies using an E−nose had been conducted prior but these usually involved detecting the

odor of pure in vitro cultured individual pathogenic fungi of the genera: Fusarium, Rhizoctonia,
Armillaria, and Hymenoscyphus or the oomycetes Phytophthora or Pythium (Loulier et al., 2020;

Borowik et al., 2021d). They secreted specific VOCs representing their secondary metabolites

which were identified using gas chromatography techniques and a GC−MS mass spectropho−

tometer. The related oomycetes Phytophthora plurivora Jung & Burgess and Pythium intermedium

# Sensors R2 Cp

1 W1S 0.085 15.3

2 W1S, W3S 0.15 9.5

3 W1S, W2S, W3C 0.19 9.4

4 W1S, W2S, W3C, W5C 0.21 7.1

5 W1S, W2S, W3C, W5C, W1C 0.24 6.1

6 W1S, W2S, W3C, W5C, W1C, W6S 0.26 4.9

7 W1S, W2S, W3C, W5C, W1C, W2W, W1W 0.26 5.0

8 W1S, W2S, W3C, W5C, W1C, W2W, W1W, W6S 0.27 6.7

9 W1S, W2S, W3C, W5C, W1C, W2W, W1W, W6S, W3S 0.27 9.1

10 W1S, W2S, W3C, W5C, W1C, W2W, W1W, W6S, W3S, W5S 0.28 11.0

Table 4.

Sensors, from which data is selected by linear regression modeling, for various number of predictors, with
corresponding magnitudes of coefficient of determination R2 and Mallow's Cp statistics. The horizontal
line separates the models for which all slope coefficients are statistically significant at p−value level of 0.05,
to more complex models for which coefficient's p is at least p>0.05

Fig. 6.

Results of linear regression prediction vs actual value of dependent variable, for model applying as predictors
responses from seven electronic nose sensors as listed in Table 4
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de Bary were successfully distinguished (Borowik et al., 2021a) but differed in their degree of

pathogenicity. For tree nursery workers the availability of information related to plant health

problems and early warnings allow them to prepare in advance and take protective measures.

Due to the necessity of implementing an early warning system for pests and pathogens, it would

be quite useful (perhaps in subsequent studies) to examine infected acorns by an E−nose to

detect the early stage of infection or the smallest proportion of infected acorns. Similar results

can be obtained by identifying the species Fusarium oxysporum Schltdl and Rhizoctonia solani
J.G. Kühn which have different hosts and are characterized by different levels of harmfulness

in forestry practices (Borowik et al., 2021b). Previous experiments with infections in germinating

acorns confirmed the possibility of distinguishing between the individual pathogens (Borowik

et al., 2021c) but did not help to develop specific sensors for the individual VOCs. The produc−

tion of these types of sensors would have been too expensive, thus a change in strategy became

necessary. At present, we are not interested in identifying specific compounds that are excreted,

but rather the effect they have, as we have shown in the study of the root fungus Armillaria gallica
Marxm. & Romagn. which is a so−called ‘oak−weakening pathogen’ (Borowik et al., 2021d). The

odors are transformed into images that, when arranged separately, confirm that we are able to

distinguish between species without knowing the specific VOCs behind them. In seed storage

this is particularly important because different fungi at different stages of decomposition can be

responsible for destroying seeds as has been observed in the case of fir seeds (Borowik et al.,
2022a). To our knowledge, this is the first attempt to detect diseased acorns in seed lots col−

lected and stored in barrels using an E−nose.

DATA COLLECTED IN THE CURRENT EXPERIMENT. The current experiment showed an interesting

trend. The more diseased acorns were present, the greater the possibility of discerning their health

status by analysis of odors. Some discrepancies in the control were identified that resulted in not

being able to correctly select completely healthy acorns. Only after being cut open did some of

them (19%, i.e., 8 out of 42) show damage to the cotyledons which had not been visible prior as

the damage was hidden under the seed coat (Fig. 1). However, after completion of the daily meas−

urements, all healthy acorns were randomly selected for their respective variant with the afore−

mentioned 8 ‘diseased’ acorns assigned to a different variant each day. However, this may have

interfered with the experiment by affecting the sensitivity of the E−nose sensors.

In any case, the experiments proved to be instructive and worthwhile due to a lack of this

type of non−invasive device use for forest conservation that facilitates the detection of fungus−

infected seeds. This provides new decision−making tools such as whether a seed lot is suitable

for sowing or whether it should first be selected or sorted out altogether to avoid introducing

pathogens into the nursery soil (substrate).

SELECTION OF THE ELECTRONIC NOSE GAS SENSORS. In Table 2 can be found with the description

of the target gases of the PEN3 sensors provided by the manufacturer. As can be seen, all sensors

selected as best predictors by the regression model are broadly sensitive to organic or aromatic

compounds. This is consistent with the general idea of designing E−noses using nonspecific

sensors with overlapping sensing regions and using machine learning models to analyze patterns

in the data. In our experiment, the W1S sensor proved to be the one whose response correlated

most strongly with the proportion of infected acorns in the measured samples. Other sensors that

also showed a correlation with this target variable were W1W and W2W. We can conclude that

in the study by Labanska et al. (2022), in which the same type of E−nose was used, W1S and

W1W sensors were also found to be useful in assessing onion spoilage status. In a study by Jia

et al. (2019), PEN3 was used to detect moldy apples and it was found that W1W, W2W and W5S
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provided the best discriminating signals. However, the biological samples used in our experiment

and the aforementioned reference examples (Jia et al., 2019; Labanska et al., 2022) are quite dif−

ferent, therefore, it is not surprising that the lists of significant sensors are different.

APPLICATIONS OF ELECTRONIC NOSE. In the research presented in this paper we applied a com−

mercial PEN3 E−nose device to detect infection of acorns by C. batschiana pathogenic fungi.

These were preliminary studies to verify the possibility of continuous monitoring of the health

status of stored acorns. An E−nose detection system can also be used for the early detection of

invasive species by plant protection services. Specifically, it could be used in tree nurseries or

at borders to monitor the presence of invasive organisms as the first line of defense against the

introduction of an unwanted fungus, oomycete or insect in quarantine. Such unapproved plant

material could be subject to further testing, such as genetic testing, to confirm or identify the

invasive species. Such a tool would be beneficial to quarantine services and may slow the spread

of harmful agrophages in the European Union.

CHALLENGES IN THE USE OF E−NOSES. It should be noted that when the samples under inves−

tigation are moist (Slimani et al., 2020), they become a challenge for artificial odor. The NeOse

Pro odor analyzer used in this experiment, based on surface plasmon resonance imaging and

biological sensors, provided multidimensional data and improved statistical discrimination of

odor patterns (Slimani et al., 2020). It was found that the presence of a high background signal

such as water vapor from aqueous samples degraded discrimination ability. For this reason, pre−

concentrators (filled with hydrophobic adsorbent) were used in the gas analysis method to improve

the detectability and increase the selectivity by reducing the background signal of water (Slimani

et al., 2020). For example, the results of the cited studies showed that coupling a silicon PC unit

with NeOse Pro resulted in an improvement in the detection limit of n−nonane by at least a factor

of 125. In seed storage, especially in that of acorns, moisture is of great importance because it ensures

the viability of stored seeds. At the same time it allows pathogenic fungi to thrive which is why

our E−nose is equipped with moisture and temperature sensors. In our case, all measurements

were performed in a chamber with controlled temperature and humidity. Likewise, the acorns

were stored during the measurements.

In forestry, especially as related to seed storage, our research is groundbreaking. However,

it has already found wider application in agriculture. A current challenge for many countries is the

widespread use of chemical nitrogen fertilizers, raising concerns about the dangerous accumulation

of nitrogen compounds in food and agricultural soils as a result of excessive nitrogen fertilization.

Consumption of food from crops with high nitrate content may pose a risk to human health.

Therefore, Tatli et al. (2021) investigated the effect of different doses of urea fertilizer on VOC

emissions from cucumber crops using the experimental device MOS E−nose. Urea fertilizer was

applied at rates of 0, 100, 200, 300 and 400 kg/ha. Cucumbers were harvested 4 to 5 months after

planting and differences in odor signatures were evaluated. This new monitoring tool could be

useful in adjusting future urea fertilizer rates to avoid over−fertilization with nitrogen (Tatli et al.,
2021).

Nitrogen fertilizers are commonly applied to increase yields of Ocimum basilicum L. (sweet

basil), a member of the Lamiaceae family (Khodamoradi et al., 2021). Nitrogen fertilizer increases

the accumulation of nitrate in plant tissues which is dangerous for human health. Therefore, the

classification of plants based on different amounts of consumed nitrogen fertilizer was carried out

using a machine odor system or E−nose. For this purpose, four different amounts of urea fertilizer

(0, 50, 100, and 150 kg/ha) were successfully tested with high accuracy (between 96.7% and 97.8%).
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In this case, the moisture content of the samples was similar. The collected data were analyzed

using linear discriminant analysis and quadratic discriminant analysis, among others, as is the

case in our research (Khodamoradi et al., 2021).

Recently, developments have been observed in the field of statistical software that allows

food scientists to perform a variety of mathematical−statistical analyses. Consequently, not only have

advanced analytical methods increased significantly but also the use of multivariate statistical

methods. The use of principal component analysis (PCA) and hierarchical cluster analysis (HCA)

in food chemistry research have increased because the results are easy to interpret and discuss.

However, their uncritical use to evaluate the relationship between bioactive compounds and

functional properties in vitro have been criticized as providing a qualitative view of the data. 

If justified, it should be noted that the correlation between compound content and bioactivity

can be adequately discussed using correlation coefficients (Granato et al., 2018). Due to our

awareness of this, we will focus on machine learning methods instead of R2 from classical linear

models in future studies and evaluate the sensitivity and specificity for the constructed algorithm.

Although the correlation found was weak, perhaps later researchers knowing our results, will

modify their experiments to obtain more significantesults. Now we would like to share our expe−

rience with the scientific community, not to repeat our way but instead to look for an improved

path, as we believe this is the purpose of scientific progress.

Conclusions

The development of new technologies in agriculture (which in the EU includes forestry) also

concerns the increasing use of E−noses. The first attempts to use them in the storage of forest

seeds, acorns in our case, are encouraging.

The PEN3 electronic portable nose which uses sensors to detect VOCs is able to assess,

to some extent, the health status of stored acorns. However, further field trials are needed to

refine both the sampling method for acorn preparation and the measurements themselves

(duration) to make the most of the device’s capabilities (sensitivity and selectivity).

We are well on our way to developing an E−nose (Borowik et al., 2021a, b, 2022b, 2023) that

can distinguish between healthy seeds (which are suitable for sowing) and diseased seeds

(which should be rejected). We hope that it will also be able to detect the presence of danger−

ous acorn disease pathogens such as C. batschiana.
Furthermore, the presented study genetically confirms the causal agent of acorn mummifi−

cation, the fungus C. batschiana, which is the main causal agent of acorn damage during storage

including within the forest and after seeding in the forest nursery.
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Streszczenie

Wstępne badania oceny stanu żołędzi Quercus robur porażonych
przez Ciboria batschiana za pomocą pomiarów nosem elektronicznym 

Drzewa leśne owocują nieregularnie, dlatego ich nasiona muszą być przechowywane, aby za−

pewnić ciągłą produkcję materiału rozmnożeniowego w szkółkach. Dotyczy to zwłaszcza dębów,

owocujących co 4 do 8 lat, których żołędzie atakowane są przez patogeny, a w szczególności

przez grzyb Ciboria batschiana (Zopf) Buchw, powodujący ich zamieranie i mumifikację (ryc. 1).

Żołędzie zgromadzone w latach urodzaju przechowywane są w beczkach. Monitorowanie zdro−

wotności żołędzi na podstawie wydzielanego zapachu ma charakter nowatorski. Należy zweryfi−

kować nie tylko, czy doszło do zakażenia żołędzi, ale także w jakim stopniu. W niniejszych testach

prowadzono próby z różną ilością zepsutych nasion (tab. 1). Zastosowany system e−nosa PEN3

wykorzystuje jako jednostki detekcyjne 10 wysokotemperaturowych czujników z tlenków metali

(ryc. 2). Koncepcja użytego e−nosa polegała na zastosowaniu zestawu niespecyficznych czujni−

ków gazu, o pokrywającym się zakresie ich detekcji (ryc. 2). Wybrane czujniki są wrażliwe na

związki organiczne lub aromatyczne (ryc. 3). Opis gazów wykrywanych przez czujniki podano 

w tabeli 2.

Celem niniejszych badań było sprawdzenie nowego zastosowania e−nosa do rozróżniania zdro−

wych i uszkodzonych partii nasion na podstawie wytwarzanych lotnych metabolitów wtórnych.
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Wykonano serię pomiarów, aby określić korelację pomiędzy stanem zakażenia próbek a zareje−

strowanymi wzorcami reakcji sensorycznych (ryc. 4). Z dostępnej literatury wynika, że jest to

pierwsza próba oceny stopnia infekcji żołędzi w ten sposób.

Czujniki e−nosa w różnym stopniu reagowały na obecność metabolitów wtórnych grzybów sygna−

lizujących zepsucie się żołędzi (ryc. 5). Między innymi stwierdzono różnicę w reakcji na obecność

lotnych związków przy różnym procencie żołędzi zasiedlonych przez patogen (tab. 3). Określono,

że współczynniki korelacji pomiędzy odsetkiem porażonych żołędzi a reakcją czujników są staty−

stycznie istotne. Współczynnik R2 modelu regresji liniowej osiągnął wartość 0,19 dla przypadku,

gdy współczynniki nachylenia 3 predyktorów były statystycznie istotne (tab. 4). Okazało się, że

przenośny e−nos PEN3 był w stanie ocenić zdrowotność przechowywanych żołędzi. Powietrze

nad nasionami zbierano, wkładając rurkę PEN3 do przygotowanych otworów w pokrywce słoika

(ryc. 2). Między pomiarami słoiki były zamknięte, a otwory uszczelnione parafilmem. Do pomia−

rów przygotowano po 3 słoiki z próbkami każdego wariantu (tab. 1). Na ryc. 4 przedstawiono

współczynnik korelacji Pearsona pomiędzy zmienną stanu próbki a reakcją czujnika. Analizowano

różnice w reakcji czujników na obecność kompozycji mierzonych lotnych substancji a liczbą

zaatakowanych żołędzi. Współczynnik korelacji pomiędzy stanem porażenia żołędzi a reakcją

czujnika mieścił się w zakresie (0,2, 0,3) dla czujników W1S, W1W i W2W (ryc. 4). Dla współ−

czynników korelacji obliczonych dla tych czujników związane z nimi wartości p−value mieściły

się poniżej 0,02, co wskazuje, że korelacje te, choć raczej słabe, były jednak istotne statystycznie.

Dla pozostałych czujników współczynnik korelacji był słabszy (również p>0,05). Taki wynik nie

wyklucza korelacji między zakażeniem a odpowiedzią czujnika, jeśli korelacja ta nie jest liniowa.

Główne cechy rozkładu odpowiedzi sensora W1S przedstawiono w postaci wykresu pogrupowa−

nego według różnych poziomów udziału zainfekowanych i zdrowych żołędzi w próbach (ryc. 5).

Wybrano ten czujnik, ponieważ wykazano, że jego odpowiedź wykazywała najsilniejszą kore−

lację ze statusem infekcji żołędzi (ryc. 4).

Indywidualna zmienność danych w każdej badanej kategorii statusu infekcji wykazała dość sze−

roki zakres, co jest zrozumiałe ze względu na naturalną zmienność próbek biologicznych, zarówno

zdrowych, jak i zainfekowanych (ryc. 5). Rycina 6 porównuje współczynnik determinacji (R2)

serii modeli regresji liniowej wykorzystujących odpowiedzi zebrane z wielu czujników PEN3

jako predyktory. Na ryc. 7 przedstawiono wykres typu scatter−plot, porównujący przewidywania

modelu regresji liniowej z rzeczywistą wartością stanu zakażenia próbki (zmienna zależna). Wybrano

model wykorzystujący jako predyktory odpowiedzi 6 czujników, dla których współczynnik Cp
Mallowa osiąga minimalną wartość (tab. 4).

Badania potwierdziły, że grzyb C. batschiana był głównym patogenem badanych żołędzi, przy

czym im więcej było chorych żołędzi, tym większa była możliwość określenia ich stanu zdrowot−

nego za pomocą analizy zapachów. Szkółkarze potrzebują skutecznych i szybkich narzędzi do

monitorowania przechowywanych nasion za pomocą nieinwazyjnego urządzenia ułatwiającego

wykrywanie nasion porażonych. Konieczne są dalsze próby terenowe w celu dopracowania zarówno

metody pobierania próbek żołędzi, jak i samych pomiarów (czas trwania), aby w pełni wykorzystać

możliwości urządzenia (czułość, selektywność).


