Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 3 |
Tytuł artykułu

How air-drying affects DGT P results in calcareous soils

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Diffusive gradients in thin films (DGT) technology has been increasingly proved to be a promising tool for accurately predicting plant-available phosphorus (P) in soil using air-dried samples. However, the effects of the air-drying process on DGT-measured P are unknown compared to those of using moist samples in which plant roots survive throughout a growing season. We investigated the differences between the Olsen P and DGT P values in 58 air-dried and moist soil samples. The results showed that the discrepancy in the DGT P values between air-dried and moist samples increased with an increase in the organic P concentration in soils. It was presumed that the air-drying process converted some easily mineralized organic P into its inorganic form, thereby allowing it to be measured by the DGT method. The DGT P values in moist samples can be calculated from the values obtained in air-dried samples using the following equation: . However, the Olsen P values were highly correlated (R²= 0.95) when using air-dried and moist samples, although significant differences were observed. We concluded that the effects of air-drying on predicting soil available P using the Olsen P method can be neglected due to the high correlation relationship. The availability of easily mineralized organic P needs to be further explored.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
28
Numer
3
Opis fizyczny
p.1507-1515,fig.,ref.
Twórcy
autor
  • College of Resources and Environment, Northwest A and F University, Yangling, China
autor
  • College of Resources and Environment, Northwest A and F University, Yangling, China
autor
  • College of Resources and Environment, Northwest A and F University, Yangling, China
autor
  • College of Resources and Environment, Northwest A and F University, Yangling, China
autor
  • College of Resources and Environment, Northwest A and F University, Yangling, China
Bibliografia
  • 1. ZHU W., ZHOU X., CHEN H., GAO L., XIAO M., LI M. High nutrient concentration and temperature alleviated formation of large colonies of Microcystis: evidence from field investigations and laboratory experiments. Water Research 101, 167, 2016.
  • 2. NASH D.M., HALLIWELL D.J. Fertilizers and phosphorus loss from productive grazing systems. Soil Research 37 (3), 403, 1999.
  • 3. OBERSTEINER M., PE UELAS J., CIAIS P., VAN DER VELDE M., JANSSENS I.A. The phosphorus trilemma. Nature Geoscience 6, 897. 2013.
  • 4. MACDONALD G.K., BENNETT E.M., POTTER P.A., RAMANKUTTY N. Agronomic phosphorus imbalances across the world’s croplands. Proceedings of the National Academy of Sciences 108 (7), 3086, 2011.
  • 5. JORDAN-MEILLE L., RUB K., G.H., EHLERT P., GENOT V., HOFMAN G., GOULDING K., RECKNAGEL J., PROVOLO G., BARRACLOUGH P. An overview of fertilizer-P recommendations in Europe: soil testing, calibration and fertilizer recommendations. Soil Use and Management 28 (4), 419, 2012.
  • 6. DAHLQVIST R., ZHANG H., INGRI J., DAVISON W. Performance of the diffusive gradients in thin films technique for measuring Ca and Mg in freshwater. Analytica Chimica Acta 460 (2), 247, 2002.
  • 7. DAVISON W., ZHANG H. In situ speciation measurements of trace components in natural waters using thin-film gels. Nature 367, 546, 1994.
  • 8. SCHINTU M., MARRAS B., DURANTE L., MELONI P., CONTU A. Macroalgae and DGT as indicators of available trace metals in marine coastal waters near a lead-zinc smelter. Environmental Monitoring and Assessment 167 (1-4), 653, 2010.
  • 9. ZHANG H., DAVISON W. Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution. Analytical Chemistry 67 (19), 3391, 1995.
  • 10. ZHANG H., DAVISON W., MILLER S., TYCH W. In situ high resolution measurements of fluxes of Ni, Cu, Fe, and Mn and concentrations of Zn and Cd in porewaters by DGT. Geochimica et Cosmochimica Acta 59 (20), 4181, 1995.
  • 11. HUANG J., BENNETT W.W., TEASDALE P.R., GARDINER S., WELSH D.T. Development and evaluation of the diffusive gradients in thin films technique for measuring nitrate in freshwaters. Analytica Chimica Acta 923, 74, 2016.
  • 12. HUANG J.Y., BENNETT W.W., WELSH D.T., LI T.L., TEASDALE P.R. Development and evaluation of a diffusive gradients in a thin film technique for measuring ammonium in freshwaters. Analytica Chimica Acta 904, 83, 2016.
  • 13. TANDY S., MUNDUS S., ZHANG H., LOMBI E., FRYDENVANG J., HOLM P.E., HUSTED S. A new method for determination of potassium in soils using diffusive gradients in thin films (DGT). Environmental Chemistry 9, 14, 2012.
  • 14. ZHANG Y., MASON S., MCNEILL A., MCLAUGHLIN, M.J. Optimization of the diffusive gradients in thin films (DGT) method for simultaneous assay of potassium and plant-available phosphorus in soils. Talanta 113, 123, 2013.
  • 15. ZHANG Y., NACHIMUTHU G., MASON S., MCLAUGHLIN M.J., MCNEILL A., BELL M.J. Comparison of soil analytical methods for estimating wheat potassium fertilizer requirements in response to contrasting plant K demand in the glasshouse. Scientific Reports 7 (1), 11391, 2017.
  • 16. MASON S., MCLAUGHLIN M., JOHNSTON C., MCNEILL, A. Soil test measures of available P (Colwell, resin and DGT) compared with plant P uptake using isotope dilution. Plant and Soil 373, 711, 2013.
  • 17. MASON S., MCNEILL A., MCLAUGHLIN M.J. Prediction of wheat response to an application of phosphorus under field conditions using diffusive gradients in thin-films (DGT) and extraction methods. Plant and Soil 337, 243, 2010.
  • 18. SIX L., SMOLDERS E., MERCKX R. Testing phosphorus availability for maize with DGT in weathered soils amended with organic materials. Plant and Soil 376 (1-2), 177, 2014.
  • 19. SPEIRS S., SCOTT B., MOODY P., MASON S. Soil phosphorus tests II: A comparison of soil test-crop response relationships for different soil tests and wheat. Crop and Pasture Science 64 (5), 469, 2013.
  • 20. ZHANG H., DAVISON W., GADI R., KOBAYASHI T. In situ measurement of dissolved phosphorus in natural waters using DGT. Analytica Chimica Acta 370 (1), 29, 1998.
  • 21. VOGEL C., SEKINE R., STECKENMESSER D., LOMBI E., STEFFENS D., ADAM C. Phosphorus availability of sewage sludge-based fertilizers determined by the diffusive gradients in thin films (DGT) technique. Journal of Plant Nutrition and Soil Science 180(5), 594, 2017.
  • 22. MACKAY J.E., CAVAGNARO T.R., JAKOBSEN I., MACDONALD L.M., GRONLUND M., THOMSEN T.P., MULLER-STOVER D.S. Evaluation of phosphorus in thermally converted sewage sludge: P pools and availability to wheat. Plant and Soil 418 (1-2), 307, 2017.
  • 23. MUNDUS S., CARSTENSEN A., HUSTED, S. Predicting phosphorus availability to spring barley (Hordeum vulgare) in agricultural soils of Scandinavia. Field Crops Research 212, 1, 2017.
  • 24. MASON S., HAMON R., NOLAN A., ZHANG H., DAVISON, W. Performance of a mixed binding layer for measuring anions and cations in a single assay using the diffusive gradients in thin films technique. Analytical Chemistry 77 (19), 6339, 2005.
  • 25. DEGRYSE F., SMOLDERS E., ZHANG H., DAVISON W. Predicting availability of mineral elements to plants with the DGT technique: a review of experimental data and interpretation by modelling. Environmental Chemistry 6 (3), 198, 2009.
  • 26. DINH M.V., SCHRAMM T., SPOHN M., MATZNER E. Drying-rewetting cycles release phosphorus from forest soils. Journal of Plant Nutrition and Soil Science 179 (5), 670, 2016.
  • 27. B NEMANN E.K., KELLER B., HOOP D., JUD K., BOIVIN P., FROSSARD E. Increased availability of phosphorus after drying and rewetting of a grassland soil: processes and plant use. Plant and Soil 370 (1-2), 511, 2013.
  • 28. ERICH M.S., HOSKINS B.R. Effects of soil drying on soil pH and nutrient extractability. Communications in Soil Science and Plant Analysis 42 (10), 1167, 2011.
  • 29. RAYMENT G.E., LYONS D.J. Soil Chemical Methods-Australia. Melbourne, CSIRO Publishing. 2010.
  • 30. RAYMENT G.E., HIGGINSON F.R. Australian laboratory handbook of soil and water chemical methods. Melbourne, Inkata Press. 1992.
  • 31. NELSON D.V., SOMMERS L.E. Total carbon, organic carbon, and organic matter. Methods of Soil Analysis. Part 3: Chemical Methods. D. L. Sparks. Madison, WI, Soil Science Society of America: 539, 1996.
  • 32. BENTON J., JONES J. Laboratory Guide for Conducting Soil Tests and Plant Analysis. Washington, D.C., CRC Press. 2001.
  • 33. KUO S. Phosphorus. Methods of Soil Analysis. Part 3: Chemical Methods. D. L. Sparks. Madison, WI, Soil Science Society of America: 869, 1996.
  • 34. OLSEN S.R. Estimation of available phosphorus in soils by extraction with sodium bicarbonate, United States Department of Agriculture; Washington. 1954.
  • 35. JIANG B., GU Y. A suggested fractionation scheme of inorganic phosphorus in calcareous soils. Fertilizer Research 20 (3), 159, 1989.
  • 36. MASON S., HAMON R., ZHANG H., ANDERSON J. Investigating chemical constraints to the measurement of phosphorus in soils using diffusive gradients in thin films (DGT) and resin methods. Talanta 74 (4), 779, 2008.
  • 37. OBALUM S.E., CHIBUIKE G.U. Air-drying effect on soil reaction and phosphorus extractability from upland-lowland tropical soils as related to their colloidal stability. Applied Ecology and Environmental Research 15 (1), 525, 2017.
  • 38. OBALUM S.E., NWITE J.C., WATANABE Y., IGWE C.A., WAKATSUKI T. Comparative topsoil characterization of Sawah rice fields in selected inland valleys around Bida, North-Central Nigeria. Tropical Agriculture and Development 56 (2), 39, 2012.
  • 39. RABEHARISOA L., RAZANAKOTO O.R., RAZAFIMANANTSOA M.P., RAKOTOSON T., AMERY F., SMOLDERS E. Larger bioavailability of soil phosphorus for irrigated rice compared with rainfed rice in Madagascar: results from a soil and plant survey. Soil Use and Management 28 (4), 448, 2012.
  • 40. SOINNE H., RATY M., HARTIKAINEN H. Effect of air-drying on phosphorus fractions in clay soil. Journal of Plant Nutrition and Soil Science 173 (3), 332, 2010.
  • 41. ACHAT D.L., POUSSE N., NICOLAS M., BR DOIRE F., AUGUST, L. Soil properties controlling inorganic phosphorus availability: general results from a national forest network and a global compilation of the literature. Biogeochemistry 127 (2-3), 255, 2016.
  • 42. DEBICKA M., KOCOWICZ A., WEBER J., JAMROZ E. Organic matter effects on phosphorus sorption in sandy soils. Archives of Agronomy and Soil Science 62 (6), 840, 2016.
  • 43. MENEZES-BLACKBURN D., ZHANG H., STUTTER M., GILES C.D., DARCH T., GEORGE T.S., SHAND C., LUMSDON D., BLACKWELL M., WEARING C., COOPER P., WENDLER R., BROWN L., HAYGARTH P.M. A holistic approach to understanding the desorption of phosphorus in soils. Environmental Science & Technology 50 (7), 3371, 2016.
  • 44. ETCHEVERS J. Chemical soil analyses- the reason for their drawbacks. Proceedings of an International Workshop on the Laboratory Methods and Data Exchange Programme’. (Ed. LK Pleijsier) pp 16-34, The Netherlands, Labex Secretariat. 1986.
  • 45. ACHAT D.L., AUGUSTO L., GALLET-BUDYNEK A., BAKKER M.R. Drying-induced changes in phosphorus status of soils with contrasting soil organic matter contents - Implications for laboratory approaches. Geoderma 187, 41, 2012.
  • 46. SIX L., SMOLDERS E., MERCKX R. The performance of DGT versus conventional soil phosphorus tests in tropical soils- maize and rice responses to P application. Plant and Soil 366 (1-2), 49, 2013.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-5fe96fec-854c-45a7-a008-8233571523fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.