Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 33 | 5 |
Tytuł artykułu

Varied tolerance to NaCl salinity is related to biochemical changes in two contrasting lettuce genotypes

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Salt stress perturbs a multitude of physiological processes such as photosynthesis and growth. To understand the biochemical changes associated with physiological and cellular adaptations to salinity, two lettuce varieties (Verte and Romaine) were grown in a hydroponics culture system supplemented with 0, 100 or 200 mM NaCl. Verte displayed better growth under 100 mM NaCl compared to Romaine, but both genotypes registered relatively similar reductions in growth under 200 mM NaCl treatment. Both varieties showed differences in net photosynthetic activity in the absence of salt and 8 days after salt treatment. These differences diminished subsequently under prolonged salt stress (14 days). Verte showed enhanced leaf proline and restricted total cations especially Na⁺, lesser malondialdehyde (MDA) formation and lignification in the roots under 100 mM NaCl salinity. Membrane damage estimated by electrolyte leakage increased with elevated salt concentrations in roots of both varieties, but Verte had significantly lower electrolyte leakage relative to Romaine under 100 mM NaCl. Moreover, Verte also accumulated greater levels of carotenoids under increasing NaCl concentrations compared to Romaine. Taken together, these findings suggest that the greater tolerance of Verte to 100 mM NaCl is related to the more restricted accumulation of total cations and toxic Na⁺ in the roots and enhanced levels of antioxidative metabolites in root and leaf tissue.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
33
Numer
5
Opis fizyczny
p.1613-1622,fig.,ref.
Twórcy
autor
  • Unite de Physiologie et Biochimie de la Tolerance au Sel des Plantes, Departement des Sciences Biologiques, FST, Campus Universitaire, 2092, Tunis, Tunisie
autor
  • Unite de Physiologie et Biochimie de la Tolerance au Sel des Plantes, Departement des Sciences Biologiques, FST, Campus Universitaire, 2092, Tunis, Tunisie
autor
  • Molecular Genetics, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada, S7N 0X2
autor
  • Unite de Physiologie et Biochimie de la Tolerance au Sel des Plantes, Departement des Sciences Biologiques, FST, Campus Universitaire, 2092, Tunis, Tunisie
autor
  • Unite de Physiologie et Biochimie de la Tolerance au Sel des Plantes, Departement des Sciences Biologiques, FST, Campus Universitaire, 2092, Tunis, Tunisie
autor
  • Unite de Physiologie et Biochimie de la Tolerance au Sel des Plantes, Departement des Sciences Biologiques, FST, Campus Universitaire, 2092, Tunis, Tunisie
autor
  • Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada, N5V 4T3
autor
  • Unite de Physiologie et Biochimie de la Tolerance au Sel des Plantes, Departement des Sciences Biologiques, FST, Campus Universitaire, 2092, Tunis, Tunisie
autor
  • Unite de Physiologie et Biochimie de la Tolerance au Sel des Plantes, Departement des Sciences Biologiques, FST, Campus Universitaire, 2092, Tunis, Tunisie
Bibliografia
  • Annalisa R, Patrizia P, Carlotta G, Graziano S, Antonio C, Daniela H (2002) Polyphenols in greenhouse and open-air-grown lettuce. Food Chem 79:337–342
  • Arnon DI (1949) Copper enzymes in chloroplasts phenol oxidase in Beta vulgaris. Plant Physiol 24:1–15
  • Ashraf M, McNeilly T (1990) Responses of four Brassica species to sodium chloride. Environ Exp Bot 30:475–487
  • Ashraf M, Naqvi M (1991) Growth and ion uptake of four Brassica species as affected by Na/Ca ratio in saline sand culture. Z Pflanzenemiihr Bodenkd 155:101–108
  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207
  • Bhandal IS, Malik CP (1988) Potassium estimation, uptake and its role in the physiology and metabolism of flowering plants. Int Rev Cytol 10:205–224
  • Bilgin O, Baser I, Korkut KZ, Balkan A, Saglam N (2008) The impacts on seedling root growth of water and salinity stress in maize (zea mays indentata sturt.). Bulgarian J Agricul Sci 14:313–320
  • Blaha G, Stelzl U, Spahn CMT, Agrawal RK, Frank J, Nierhaus KH (2000) Preparation of functional ribosomal complexes and effect of buffer conditions on tRNA positions observed by cryoelectron microscopy. Methods Enzymol 317:292–309
  • Cachorro P, Ortiz A, Cerda A (1994) Implications of calcium nutrition on the response of Phaseolus vulgaris L. to salinity. Plant Soil 159:205–212
  • Cramer GR, Epstein E, Lauˆchli A (1989) Na–Ca interactions in barley seedlings: relationship to ion transport and growth. Plant Cell Environ 12:551–558
  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223
  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9
  • Dionisio-Sese ML, Tobita S (2005) Effects of salinity on sodium content and photosynthetic responses of rice seedlings differing in salt tolerance. J Plant Physiol 157:54–58
  • Dubey RS (2005) Photosynthesis in plants under stressful conditions In: Photosynthesis Handbooks. CRC Press, New York, pp 717–718
  • El-Hendawy SE, Hu Y, Schmidhalter U (2005) Growth, ion content, gas exchange, and water relations of wheat genotypes differing in salt tolerances. Aust J Agric Res 56:123–134
  • Elkahoui S, Hernández JA, Abdelly C, Ghrir R, Limam F (2005) Effects of salt on lipid peroxidation and antioxidant enzyme activities of Catharanthus roseus suspension cells. Plant Sci 168:607–613
  • Grattan SR, Grieve CM (1993) Mineral nutrient acquisition and response by plants grown in saline environments. In: Handbook of plant and crop stress. Marcel Dekker, New York, pp 203–226
  • Gross J (1991) Pigments in vegetables. Chlorophylls and carotenoids. Avi: Van Nostrand Reinhold Company Inc, New York
  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Mol Biol 51:463–499
  • He T, Cramer GR (1993) Salt tolerance of rapid-cycling Brassica species in relation to potassium/sodium ratio and selectivity at the whole plant and callus levels. J Plant Nutr 16:1263–1277
  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198
  • Hermann K (1976) Flavonols and flavones in food plants: a review. J Food Technol 11:433–448
  • Hernandez JA, Aguilar AB, Portillo B, López-Gómez E, Mataix Beneyto J, García-Legaz MF (2003) The effect of calcium on the antioxidant enzymes from salt-treated loquat and anger plants. Funct Plant Biol 30:1127–1137
  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Station Circ (Berkley) 347:1–32
  • Huang J, Bhinu VS, Li X, Dallal Bashi Z, Zhou R, Hannoufa A (2009) Pleiotropic changes in Arabidopsis f5h and sct mutants revealed by large-scale gene expression and metabolite analysis. Planta 230:1057–1069
  • Inze' D, van Montagu M (1995) Oxidative stress in plants. Curr Opin Biotechnol 6:153–158
  • Johnson DW, Smith SE, Dobrenz AK (1992) Genetic and phenotypic relationships in response to NaCl at different developmental stages in alfalfa. Theor Appl Genet 83:833–838
  • Ke D, Saltveit ME (1988) Plant hormone interaction and phenolic metabolism in the regulation of russet spotting in iceberg lettuce. Plant Physiol 88:1136–1140
  • Kim HJ, Fonseca JM, Choi JH, Kubota C, Kwon DY (2008) Salt in irrigation water affects the nutritional and visual properties of Romaine lettuce (Lactuca sativa L.). J Agric Food Chem 56:3772–3776
  • Kotchoni SO, Kuhns C, Ditzer A, Kirch HH, Bartels D (2006) Overexpression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and protects plants against lipid peroxidation and oxidative stress. Plant Cell Environ 29:1033–1048
  • Kuiper PJC (1985) Environmental changes and lipid metabolism of higher plants. Physiol Plant 64:118–122
  • Liu X, Ardo S, Bunning M, Parry J, Zhou K, Stushnoff C (2007) Total phenolic content and DPPH radical scavenging activity of lettuce (Lactuca sativa L.) grown in Colorado. Food Sci Technol 40:552–557
  • M’rah S, Ouerghi Z, Berthomieu C, Havaux M, Jungas C, Hajji M, Grignon C, Lachaâl M (2006) Effects of NaCl on the growth, ion accumulation and photosynthetic parameters of Thellungiella halophila. J Plant Physiol 163:1022–1031
  • Mahmoudi H, Huang J, Gruber MY, Kaddour R, Lachaâl M, Ouerghi Z, Hannoufa A (2010) The impact of genotype and salinity on physiological function, secondary metabolite accumulation, and antioxidative responses in lettuce. J Agric Food Chem 58:5122–5130
  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London
  • Nasri N, Kaddour R, Rabhi M, Plassard C, Lachaal M (2010) Effect of salinity on germination, phytase activity and phytate content in lettuce seedling. Act Physiol Plant doi 10.1007/s11738-010-0625-4
  • Nicolle C, Carnat A, Fraisse D, Lamaison JL, Rock E, Michel H, Amouroux P, Remesy C (2004) Characterisation and variation of antioxidant micronutrients in lettuce (Lactuca sativa folium). J Sci Food Agric 84:2061–2069
  • Sairam RK, Deshmukh PS, Saxena DC (1998) Role of antioxidant system in wheat genotypes tolerance to water stress. Biol Plant 41:387–394
  • Shin JH, Kim SR, An G (2009) Rice aldehyde dehydrogenase7 is needed for seed maturation and viability. Plant Physiol 149:905–915
  • Stepien P, Klobus G (2006) Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. Biol Plant 50:610–616
  • Tester M, Davenport R (2003) Na⁺ tolerance and Na⁺ transport in higher plants. Ann Bot 91:503–527
  • Wyn Jones RG, Brady CJ, Spears J (1979) Ionic and osmotic relations in plant cells. In: Recent Advances in the Biochemistry of Cereals. Academic Press, London, pp 63–103
Uwagi
PL
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-5b84c8e4-d9c2-45aa-a419-ce89a20bc8e5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.