Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2012 | 57 | 2 |
Tytuł artykułu

Burrow architecture, family composition and habitat characteristics of the largest social African mole-rat: the giant mole-rat constructs really giant burrow systems

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Among African mole-rats, the giant mole-rat Fukomys mechowii is the largest social species. Despite several attempts to study a free-living population, information on its biology from natural habitats is very scarce. We mapped two neighbouring burrow systems of the giant mole-rat in a miombo woodland in Zambia. We provide information on the size and kin structure of the respective mole-rat families, architecture of their burrow systems, and characteristics of the food supply and soil around the two mapped and additional ten burrow systems. Both uncovered burrow systems were very large (total lengths, 2,245 and 743 m), making them the largest burrow systems ever mapped. Food resources around the additional ten burrow systems had a clumped distribution (standardized Morisita index of dispersion = 0.526), but a relatively high biomass (298 ± 455 g m−2). This, together with favourable soil conditions even in the advanced dry season (cone resistance, 328 ± 50 N m−2; soil density, 1.36 ± 0.06 g cm−3) indicates relatively hospitable ecological conditions. Both food supply and soil conditions were comparable with the conditions found in a miombo habitat of the solitary silvery mole-rat in Malawi. This suggests that there are no ecological constraints which would preclude the solitary life of a subterranean herbivore from the examined habitat. Microsatellite analysis supported the assumption that giant mole-rats live in monogamous multigenerational families with only one breeding pair of non-related animals and their offspring. The mean family size is consistent with previous findings on this species and comparable to that found in other Fukomys species studied thus far.
Słowa kluczowe
Wydawca
-
Czasopismo
Rocznik
Tom
57
Numer
2
Opis fizyczny
p.121-130,fig.,ref.
Twórcy
autor
  • Department of Zoology, Faculty of Science, University of South Bohemia, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
autor
  • Department of Zoology, Faculty of Science, University of South Bohemia, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
  • Department of Population Biology, Institute of Verterbrate Biology, Academy of Sciences of the Czech Republic, Kvetna 8, 60365 Brno, Czech Republic
autor
  • Department of Zoology, Faculty of Science, University of South Bohemia, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
autor
  • Department of Zoology, Faculty of Science, University of South Bohemia, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
autor
  • Department of Population Biology, Institute of Verterbrate Biology, Academy of Sciences of the Czech Republic, Kvetna 8, 60365 Brno, Czech Republic
autor
  • Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Universitasstr. 5, 45117 Essen, Germany
Bibliografia
  • Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics International 11(7):36–42
  • Benedix JH (1993) Area-restricted search by the plain pocket gopher (Geomys bursarius) in tallgrass prairie habitat. Behav Ecol 4:318–324
  • Bennett NC, Faulkes CG (2000) African mole-rats: ecology and eusociality. Cambridge University Press, Cambridge
  • Block A, von Bloh W, Schnellhuber HJ (1990) Efficient box-counting determination of generalized fractal dimensions. Phys Rev A 42:1869–1874
  • Brett RA (1991) The ecology of naked-mole-rat colonies: burrowing, food, and limiting factors. In: Sherman PW, Jarvis JUM, Alexander RD (eds) The biology of the naked mole-rat. Princeton University Press, Princeton, pp 137–148
  • Burda H, Kawalika M (1993) Evolution of eusociality in the Bathyergidae. The case of the giant mole-rats (Cryptomys mechowi). Naturwissenschaften 80:235–237
  • Burda H, Honeycutt RL, Begall S, Locker-Grütjen O, Scharff A (2000) Are naked and common mole-rats eusocial and if so, why? Behav Ecol Sociobiol 47:293–303
  • Burland TM, Bishop JM, O’Ryan C, Faulkes CG (2001) Microsatellite primers for the African mole-rat genus Cryptomys and cross-species amplification within the family Bathyergidae. Mol Ecol Notes 1:311–314
  • ESRI® (1999–2008) ArcInfo™ Workstation Version 9.3 GIS software
  • Herbst M, Bennett NC (2006) Burrow architecture and burrowing dynamics of the endangered Namaqua dune mole-rat (Bathyergus janetta) (Rodentia: Bathyergidae). J Zool (London) 270:420–428
  • Heth G (1989) Burrow patterns of the mole rat Spalax ehrenbergi in two soil types (terra-rossa and rendzina) in Mount Carmel. J Zool (London) 217:39–56
  • Hickman GC (1979) Burrow system structure of the Bathyergid Cryptomys hottentotus in Natal, South Africa. Z Saugetierkd 44:153–162
  • Hickman GC (1990) Adaptiveness of tunnel system features in subterranean mammal burrows. In: Nevo E, Reig OA (eds) Evolution of subterranean mammals at the organismal and molecular levels. Alan R. Liss, New York, pp 185–210
  • Jarvis JUM (1985) Ecological studies on Heterocephalus glaber, the naked mole-rat, in Kenya. Natl Geogr Res 20:429–437
  • Jarvis JUM, Bennett NC (1991) Ecology and behavior of the family Bathyergidae. In: Sherman PW, Jarvis JUM, Alexander RD (eds) The biology of the naked mole-rat. Princeton University Press, Princeton, pp 66–96
  • Jarvis JUM, Bennett NC (1993) Eusociality has evolved independently in two genera of bathyergid mole-rats—but occurs in no other subterranean mammal. Behav Ecol Sociobiol 33:253–260
  • Jarvis JUM, O’Riain MJ, Bennett NC, Sherman PW (1994) Mammalian eusociality: a family affair. Trends Ecol Evol 9:47–51
  • Jarvis JUM, Bennett NC, Spinks AC (1998) Food availability and foraging by wild colonies of Damaraland mole-rats (Cryptomys damarensis): implications for sociality. Oecologia 113:290–298
  • Kalinowski ST, Wagner AP, Taper ML (2006) ML-RELATE: a computer program for maximum likelihood estimation of relatedness and relationship. Mol Ecol Notes 6:576–579
  • Karperien A (1999–2007) FracLac for ImageJ, version 2.5. http://​rsb.​info.​nih.​gov/​ij/​plugins/​fraclac/​FLHelp/​Introduction.​htm
  • Kawalika M, Burda H (2007) Giant mole-rats, Fukomys mechowii, 13 years on the stage. In: Begall S, Burda H, Schleich CE (eds) Subterranean rodents: news from underground. Springer, Heidelberg, pp 205–219
  • Kingdon J (1974) Mole-rats, blesmols, root-rats. In: Kingdon J (ed) East African mammals. An Atlas of Evolution in Africa, volume II, part B (hares and rodents). Academic, New York, pp 474–494
  • Kinlaw A (1999) A review of burrowing by semi-fossorial vertebrates in arid environments. J Arid Environ 41:127–145
  • Le Comber SC, Spinks AC, Bennett NC, Jarvis JUM, Faulkes CG (2002) Fractal dimension of African mole-rat burrows. Can J Zool 80:436–441
  • Le Comber SC, Seabloom EW, Romanach SS (2006) Burrow fractal dimension and foraging success in subterranean rodents: a simulation. Behav Ecol 17:188–195
  • Nevo E (1999) Mosaic evolution of subterranean mammals: regression, progression and global convergence. Oxford University Press, Oxford
  • Oyama M, Takehara H (2002) Revised standard soil color chart. Fujihira Industry, Tokyo
  • Reichmann OJ, Whitham TG, Ruffner GA (1982) Adaptive geometry of burrow spacing in two pocket gopher populations. Ecology 63:687–695
  • Romañach SS, Seabloom EW, Reichman OJ, Rogers WE, Cameron GN (2005) Effects of species, sex, age, and habitat on geometry of pocket gopher foraging tunnels. J Mammal 86:750–756
  • Rosi MI, Cona MI, Videla F, Puig S, Roig VG (2000) Architecture of Ctenomys mendocinus (Rodentia) burrows from two habitats differing in abundance and complexity of vegetation. Acta Theriol 45:491–505
  • Scharff A, Locker-Grutjen O, Kawalika M, Burda H (2001) Natural history of the giant mole-rat, Cryptomys mechowi (Rodentia: Bathyergidae), from Zambia. J Mammal 82:1003–1015
  • Sichilima AM, Bennett NC, Faulkes CG, Le Comber SC (2008a) Evolution of African mole-rat sociality: burrow architecture, rainfall and foraging in colonies of the cooperatively breeding Fukomys mechowii. J Zool (London) 275:276–282
  • Sichilima AM, Faulkes CG, Bennett NC (2008b) Field evidence for seasonality reproduction and colony size in the Afrotropical giant mole-rat, Fukomys mechowii (Rodentia: Bathyergidae). African Zool 43:144–149
  • Šklíba J, Šumbera R, Vitámvás M (2011) Resource characteristics and foraging adaptations in the silvery mole-rat (Heliophobius argenteocinereus), a solitary Afrotropical bathyergid. Ecol Research (in press)
  • Šklíba J, Šumbera R, Chitaukali WN, Burda H (2009) Home-range dynamics in a solitary subterranean rodent. Ethology 115:217–226
  • Smith-Gill SJ (1975) Cytophysiological basis of disruptive pigmentary patterns in the leopard frog Rana pipiens. II. Wild type and mutant cell specific patterns. J Morphol 146:35–54
  • Spinks AC, Plaganyi EE (1999) Reduced starvation risks and habitat constraints promote cooperation in the common mole-rat, Cryptomys hottentotus hottentotus: a computer-simulated foraging model. Oikos 85:435–444
  • Spinks AC, Bennett NC, Jarvis JUM (2000) A comparison of ecology of two populations of common mole-rat, Cryptomys hottentotus hottentotus: the effect of aridity on food, foraging and body mass. Oecologia 125:341–349
  • Šumbera R, Burda H, Chitaukali WN, Kubová J (2003) Silvery mole-rats (Heliophobius argenteocinereus, Bathyergidae) change their burrow architecture seasonally. Naturwissenschaften 90:370–373
  • Šumbera R, Chitaukali WN, Burda H (2007) Biology of the silvery mole-rat (Heliophobius argenteocinereus). Why study a neglected subterranean rodent species? In: Begall S, Burda H, Schleich CE (eds) Subterranean rodents: news from underground. Springer, Heidelberg, pp 221–236
  • Šumbera R, Šklíba J, Elichová M, Chitaukali WN, Burda H (2008) Natural history and burrow system architecture of the silvery mole-rat from Brachystegia woodland. J Zool (London) 274:77–84
  • Thomas HG, Bateman PW, Le Comber SC, Bennett NC, Elwood RW, Scantlebury M (2009) Burrow architecture and digging activity in the Cape dune mole rat. J Zool (London) 279:277–284
  • Wallace EC, Bennett NC (1998) The colony structure and social organization of the giant Zambian mole-rat, Cryptomys mechowi. J Zool (London) 244:51–61
  • Zuri I, Terkel J (1996) Locomotor pattern, territory and tunnel utilization in the mole-rat Spalax ehrenbergi. J Zool (London) 240:123–140
Uwagi
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-5b3110bb-6c15-497b-8248-1153eb0bda39
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.