Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
The aim of the research was to analyze postural deviations in Romberg’s Test in girls with idiopathic scoliosis and scoliotic posture. 28 girls aged 7-18 years old were involved in the study. Spine research was made by Exhibeon digital radiography. Based on the size of the angle of spinal curvature there were identified scoliotic posture: 1-9° and scoliosis: ≥ 10°. Postural reactions were examined by static-dynamic Tecnobody’s ST 310 Plus Stability System platform. There were 21 (75%) children with scoliotic posture, and 7 (25%) with idiopathic scoliosis. Postural reaction of FBSD was from 6.57 with opened eyes (OE) to 7.32 with closed eyes (CE). Postural reaction of MLSD was from 3.89 with opened eyes (OE) to 5.54 with closed eyes (CE). Postural reaction of AFBS was from 11.96 with opened eyes (OE) to 17.29 with closed eyes (CE). Postural reaction of AMLS was from 9.96 with opened eyes (OE) to 13.89 with closed eyes (CE). Analysis of variance with dual classification revealed a significant effect in Romberg’s Test options (OE/CE) to: Average COP X (p = 0.002264), Average COP Y (p = 0.000009), Perimeter (p = 0.000008), Ellipse Area (p = 0.029882), MediumLateral Standard Deviation X (p = 0.022162), Average ForwardBackward Speed Y (p = 0.000071) and Average Medium-Lateral Speed X (p = 0.000916). In the examination with eyes closed it has been observed a significant increase of this variances. There was no significant effects only in Forward-Backward Standard Deviation Y. Most of postural deviations did not fit the norm.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.157-165,ref.
Twórcy
autor
- Department Posturology, Hearing and Balance Rehabilitation, Jan Kochanowski University in Kielce, Kielce, Poland
autor
- Gdansk University of Physical Education and Sport, Gdansk, Poland
autor
- Jan Kochanowski University in Kielce, Kielce, Poland
autor
- Lithuanian University of Educational Sciences, Vilnius, Lithuania
Bibliografia
- 1. Allard P, Chavet P, Barbier F, Gatto L, Labelle H, Sadeghi H. Effect of body morphology on standing balance in adolescent idiopathic scoliosis. Am J Phys Med Rehab. 2004; 83(9): 689-697.
- 2. Bruyneel AV, Chavet P, et al. Idiopathic scoliosis and balance organisation in seated position on a seesaw. Eur Spine J. 2010; 19, 5: 739-746.
- 3. Burwell RG, Aujla RK, Grevitt MP, et. al. A new approach to the pathogenesis of adolescent idiopathic scoliosis: interaction between risk factors involving a diverse network of causal developmental pathways. Clin. Anat. 2011; 24, 3: 384.
- 4. Eron JN, Davidovics N, Della Santina CC. Contribution of vestibular efferent system alpha-9 nicotinic receptors to vestibulo-oculomotor interaction and short-term vestibular compensation after unilateral labyrinthectomy in mice. Neurosci Lett. 2015; 18, 602: 156-161. doi: 10.1016/j.neulet.2015.06.060.
- 5. Eshraghi A, Maroufi N, Sanjari MA,Keyhani MR, Saeedi H. Static dynamic balance of schoolgirls with hyperkyphosis. Scoliosis. 2009; 4(2): 05 doi: 10.1186/1748-7161-4-S2-O5.
- 6. Forbes PA, Luu BL, Van der Loos HF, Croft EA, Inglis JT, Blouin JS. Transformation of Vestibular Signals for the Control of Standing in Humans. J Neurosci. 2016; 9; 36(45): 11510-11520.
- 7. Gao X, Gordon D, Zhang D, et. al. CHD7 gene polymorphisms are associated with susceptibility to idiopathic scoliosis. Am J Hum Genet. 2007; 5, 80: 957-965.
- 8. Gauchard G, Lascombes P, Kuhnast M. Influence of different types of progressive idiopathic scoliosis on static and dynamic postural control. Spine. 2001; 1, 26(9): 1052-1058.
- 9. Glover CD, Carling NP. Neuromonitoring for scoliosis surgery. Anesthesiol Clin. 2014; 32(1): 101-114. doi: 10.1016/j.anclin.2013.10.001.
- 10. Herman R, Mixon J, Fisher A, Maulucci R, Stuyck J. Idiopathic scoliosis and the central nervous system: a motor control problem. The Harrington lecture, 1983. Scol Res Soc Spine. 1985; 10(1): 1-14.
- 11. Héroux ME, Law TC, Fitzpatrick RC, Blouin JS. CrossModal Calibration of Vestibular Afference for Human Balance. PLoS One. 2015; 20, 10(4): e0124532. doi: 10.1371/ journal. pone.0124.
- 12. Hülse R, Hörmann K, Servais JJ, Hülse M, Wenzel A. Clinical experience with video Head Impulse Test in children. Int J Pediatr Otorhinolaryngol. 2015; 79(8): 1288-1293. doi: 10.1016/j.ijporl.2015.05.034.
- 13. Hwang H, Lee JH, Choi YC. Clinical Characteristics of Spinal Muscular Atrophy in Korea Confirmed by Genetic Analysis. Yonsei Med J. 2017; 58(5): 1051-1054. doi: 10.3349/ymj.2017.58.5.1051.
- 14. Kepler CK, Meredith DS, Green DW, Widmann RF. Long-term outcomes after posterior spine fusion for adolescent idiopathic scoliosis. Curr Opin Pediatr. 2012; 24, 1: 68-75.
- 15. Kobayashi K, Imagama S, Ito Z, Ando K, Hida T, Ito K, Tsushima M, Ishikawa Y, Matsumoto A, Nishida Y, Ishiguro N. Transcranial motor evoked potential waveform changes in corrective fusion for adolescent idiopathic scoliosis. J Neurosurg Pediatr. 2016; 30: 1-8.
- 16. Lidström J, Friberg S, Lindström L, Sahlstrand T. Postural control in siblings to scoliosis patients and scoliosis patients. Spine. 1988; 9: 1070-1074.
- 17. Lion A, Haumont T, Gauchard GC, Wiener-Vacher SR, Lascombes P, Perrin PP. Visuo-oculomotor deficiency at early-stage idiopathic scoliosis in adolescent girls. Spine. 2013; 1, 38(3): 238-44. doi: 10.1097/BRS.0b01 3e31826a3b05.
- 18. Manzoni D, Miele F. Vestibular mechanisms involved in idiopathic scoliosis. Arch Ital Biol. 2002; 140(1): 67-80.
- 19. Mirovsky Y, Blankstein A, Shlamkovitch N. Postural control in patients with severe idiopathic scoliosis: a prospective study. J Pediatr Orthop B. 2006; 15(3): 168-171.
- 20. Monticone M, Ambrosini E, Cazzaniga D, Rocca B, Motta L, Cerri C, Brayda-Bruno M, Lovi A. Adults with idiopathic scoliosis improve disability after motor and cognitive rehabilitation: results of a randomised controlled trial. Eur Spine J. 2016; 25(10): 3120-3129.
- 21. Naranjo EN, Cleworth TW, Allum JH, Inglis JT, Lea J, Westerberg BD, Carpenter MG. Vestibulo-spinal and vestibulo-ocular reflexes are modulated when standing with increased postural threat. J Neurophysiol. 2016; 1, 115(2): 833-842. doi: 10.1152/jn. 00626.2015.
- 22. Ogura Y, Kou I, Takahashi Y, Takeda K, Minami S, Kawakami N, et al. A functional variant in MIR4300HG, the host gene of microRNA MIR4300 is associated with progression of adolescent idiopathic scoliosis. Hum Mol Genet. 2017; 15, 26(20): 4086-4092. doi: 10.1093/hmg/ ddx291.
- 23. Ostrowska B, Rozek-Piechura K, Skolimowski T. Recovery of dynamic balance following external posture disturbance in children with idiopathic scoliosis. Ortop Traumatol Rehabil. 2006; 30, 8(3): 300-307.
- 24. Pialasse JP, Descarreaux M, Mercier P, Simoneau M. Sensory reweighting is altered in adolescent patients with scoliosis: Evidence from a neuromechanical model. Gait Posture. 2015; 42(4): 558-563. doi: 10.1016/j. gaitpost.2015.08.013.
- 25. Pialasse JP, Mercier P, Descarreaux M, Simoneau M. Sensorimotor Control Impairment in Young Adults With Idiopathic Scoliosis Compared With Healthy Controls. J Manipulative Physiol Ther. 2016; 39(7): 473-479. doi: 10.1016/j.jmpt. 2016.06.001.
- 26. Pialasse JP, Mercier P, Descarreaux M, Simoneau M. A procedure to detect abnormal sensorimotor control in adolescents with idiopathic scoliosis. Gait Posture. 2017; 57: 124-129. doi: 10.1016/j.gaitpost.2017.05.032.
- 27. Sahlstrand T, Örtengren R, Nachemson A. Postural equilibrium in adolescent idiopathic scoliosis. Acta Orthop Scand J. 1978; 49: 354-365.
- 28. Wilczyński J. Body posture defects and mean sway X and mean sway Y in girls and boys of school age. Child Neurology [pol. Neurologia Dziecięca]. 2014; 23, 46: 27-33.
- 29. Yamada K, Ikata T, Yamamoto H, Nakogawa Y, Tanaka H, Tokushima J. Equilibrium function in scoliosis and active corrective plaster jacket for the treatment. Tokushima J Exp Med. 1969; 16(1): 1-7.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-59d1e75f-ef72-4475-aac9-877d2221f0d4