Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 40 | 01 |
Tytuł artykułu

Effects of calcium and EGTA on thiol homeostasis and defense-related enzymes in Cd-exposed chickpea roots

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Exposure of chickpea seeds (Cicer arietinum L.) to cadmium stress for 6 days resulted in growth reduction and oxidative stress installation as exemplified by a strong accumulation of H₂O₂ and a disruption of enzymatic and non-enzymatic defense systems. The enrichment of the seed germinating medium with calcium and ethylene glycol tetraacetic acid (EGTA) relieved the detrimental effect of Cd on root growth. This protective effect would be the result of (1) protein thiol protection, as evidenced by thioredoxin system activation, and of (2) the glutathione disulfide content decrease. The absence of corrective effect of effectors on glutathione redox state should be associated with the concomitant decrease in regeneration and consumption processes of reduced forms of glutathione, namely by glutathione reductase and glutathione peroxidase activities, respectively. Calcium and EGTA application led to oxidative stress alleviation as evidenced by H₂O₂ content decrease and the restoration of catalase and ascorbate peroxidase activities at a level similar to control roots. Moreover, the analysis of the transcriptional system relating to the up-cited enzymes revealed a decreased gene expression subsequent to the enrichment of germination medium with the effectors. The present research provided deeper insights into the mechanisms induced by Ca and EGTA to protect plant cell against Cd-induced oxidative injury.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
40
Numer
01
Opis fizyczny
Article 20 [12p.], fig.,ref.
Twórcy
autor
  • Plant Toxicology and Molecular Biology of Microorganisms, Faculty of Science of Bizerta, University of Carthage, 7021 Zarzouna, Tunisia
autor
  • Plant Toxicology and Molecular Biology of Microorganisms, Faculty of Science of Bizerta, University of Carthage, 7021 Zarzouna, Tunisia
  • Laboratory of Molecular Genetics, Immunology and Biotechnology, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
autor
  • Graduate School of Environmental and Life Science, Okayama University, Okayama 700‑8530, Japan
  • Plant Toxicology and Molecular Biology of Microorganisms, Faculty of Science of Bizerta, University of Carthage, 7021 Zarzouna, Tunisia
autor
  • Graduate School of Environmental and Life Science, Okayama University, Okayama 700‑8530, Japan
autor
  • Plant Toxicology and Molecular Biology of Microorganisms, Faculty of Science of Bizerta, University of Carthage, 7021 Zarzouna, Tunisia
Bibliografia
  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126
  • Agrawal SB, Mishra S (2009) Effects of supplemental ultraviolet-B and cadmium on growth, antioxidants and yield of Pisum sativum L. Ecotox Environ Safe 72:610–618
  • Ahmad P, Nabi G, Ashraf M (2011) Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. S Afr J Bot 77:36–44
  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341
  • Álvarez C, Ángeles Bermúdez M, Romero LC, Gotor C, García I (2012) Cysteine homeostasis plays an essential role in plant immunity. New Phytol 193:165–177
  • Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal M et al (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids—a review. Environ Exp Bot 75:307–324
  • Bączek-Kwinta R, Bartoszek A, Kusznierewicz B, Antonkiewicz J (2011) Physiological response of plants and cadmium accumulation in heads of two cultivars of white cabbage. J Elem 16(3):355–364
  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
  • Carol RJ, Dolan L (2006) The role of reactive oxygen species in cell growth: lessons from root hairs. J Exp Bot 57:1829–1834
  • Chaoui A, El Ferjani E (2014) Heavy metal-induced oxidative damage is reduced by β-estradiol application in lentil seedlings. Plant Growth Regul 74:1–9
  • Chen F, Wang F, Wu F, Mao W, Zhang G, Zhou M (2010) Modulation of exogenous glutathione in antioxidant defense system against Cd stress in the two barley genotypes differing in Cd tolerance. Plant Physiol Biochem 48:663–672
  • Chi Y, Cheng Y, Vanitha J, Kumar N, Ramamoorthy R, Ramachandran S, Jiang SY (2011) Expansion mechanisms and functional divergence of the glutathione S-transferase family in sorghum and other higher plants. DNA Res 18:1–16
  • Chugh LK, Sawhney SK (1996) Effect of cadmium on germination, amylases and rate of respiration of germinating pea seeds. Environ Pollut 92:1–5
  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719
  • Couturier J, Chibani K, Jacquot JP, Rouhier N (2013) Cysteine-based redox regulation and signaling in plants. Front Plant Sci 4:105. https://doi.org/10.3389/fpls.2013.00105
  • Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Nair AR, Munters E, Artois TJ et al (2010) Cadmium stress: an oxidative challenge. Biometals 23:927–940
  • Cuypers A, Karen S, Jos R, Kelly O, Els K, Tony R, Nele H, Nathalie V, Suzy VS, Frank VB et al (2011) The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J Plant Physiol 168:309–316
  • DalCorso G, Farinati S, Maistri S, Furini A (2008) How plants cope with cadmium: staking all on metabolism and gene expression. J Integr Plant Biol 50:1268–1280
  • Delalande O, Desvaux H, Godat E, Valleix A, Junot C, Labarre J, Boulard Y (2010) Cadmium–glutathione solution structures provide new insights into heavy metal detoxification. FEBS J 277:5086–5096
  • Dos Santos VC, Rey P (2006) Plant thioredoxins are key actors in the oxidative stress response. Trends Plant Sci 11:329–334
  • Drążkiewicz M, Skórzyńska-Polit E, Krupa Z (2007) The redox state and activity of superoxide dismutase classes in Arabidopsis thaliana under cadmium or copper stress. Chemosphere 67:188–193
  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77
  • Farzadfar S, Zarinkamar F, Modarres-Sanavy SAM, Hojati M (2013) Exogenously applied calcium alleviates cadmium toxicity in Matricaria chamomilla L. plants. Environ Sci Pollut Res Int 20:1413–1422
  • Fielding JL, Hall JL (1978) A biochemical and cytochemical study of peroxidase activity in roots of Pisum sativum II. Distribution of enzymes in relation to root development. J Exp Bot 29:983–991
  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25
  • Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide—and glutathione—associated mechanisms of acclimatory stress tolerance and signalling. Physiol Plant 100:241–254
  • Garcia SC, Schott K, Charão M, Moro A, Bulcão R, Grotto D, Valentini J, Bohrer D, Cardoso S, Pomblum V (2008) Quantification of reduced glutathione by HPLC-UV in erythrocytes of hemodialysis patients. Biomed Chromatogr 22:460–468
  • Gelhaye E, Rouhier N, Navrot N, Jacquot JP (2005) The plant thioredoxin system. Cell Mol Life Sci 62:24–35
  • Green LS, Yee BC, Buchanan BB, Kamide K, Sanada Y, Wada K (1991) Ferredoxin and ferredoxin-NADP reductase from photosynthetic and nonphotosynthetic tissues of tomato. Plant Physiol 96:1207–1213
  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, New York, pp 617–783
  • Jacquemond M, Verdin E, Dalmon A, Guilbaud L, Gognalons P (2009) Serological and molecular detection of tomato chlorosis virus and tomato infectious chlorosis virus in tomato. Plant Pathol J 58:210–220
  • Jacquot JP, Rivera-Madrid R, Marinho P, Kollarova M, Le Maréchal P, Miginiac-Maslow M, Meyer Y (1994) Arabidopsis thaliana NAPHP thioredoxin reductase. cDNA characterization and expression of the recombinant protein in Escherichia coli. J Mol Biol 235:1357–1363
  • Job C, Rajjou L, Lovigny Y, Belghazi M, Job D (2005) Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiol 138:790–802
  • Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13:3145–3175
  • Kaplan B, Davydov O, Knight H, Galon Y, Knight MR, Fluhr R, Fromm H (2006) Rapid transcriptome changes induced by cytosolic Ca²⁺ transients reveal ABRE-related sequences as Ca²⁺-responsive cis elements in Arabidopsis. Plant Cell 18:2733–2748
  • Katrusiak AE, Paterson PG, Kamencic H, Shoker A, Lyon AW (2001) Pre-column derivatization high-performance liquid chromatographic method for determination of cysteine, cysteinyl-glycine, homocysteine and glutathione in plasma and cell extracts. J Chromatogr B Biomed Sci Appl 758:207–212
  • Kawashima CG, Noji M, Nakamura M, Ogra Y, Suzuki KT, Saito K (2004) Heavy metal tolerance of transgenic tobacco plants over-expressing cysteine synthase. Biotechnol Lett 26:153–157
  • Khraiwesh B, Arif MA, Seumel GI, Ossowski S, Weigel D, Reski R, Frank W (2010) Transcriptional control of gene expression by MicroRNAs. Cell 140:111–122
  • Kinraide TB (1998) Three mechanisms for the calcium alleviation of mineral toxicities. Plant Physiol 118:513–520
  • Kusznierewicz B, Bączek-Kwinta R, Bartoszek A, Piekarska A, Huk A, Manikowska A, Antonkiewicz J, Namieśnik J, Konieczka P (2012) The dose-dependent influence of zinc and cadmium contamination of soil on their uptake and glucosinolate content in white cabbage (Brassica oleracea var. capitata f.alba). Environ Toxicol Chem 31:2482–2489
  • Lappartient AG, Touraine B (1996) Demand-driven control of root ATP sulfurylase activity and SO₄ ²⁻ uptake in intact canola (the role of phloem-translocated glutathione). Plant Physiol 111:147–157
  • Lefèvre I, Marchal G, Corréal E, Zanuzzi A, Lutts S (2009) Variation in response to heavy metals during vegetative growth in Dorycnium pentaphyllum Scop. Plant Growth Regul 59:1–11
  • Liszkay A, Van der Zalm E, Schopfer P (2004) Production of reactive oxygen intermediates (O₂ ˙⁻ , H₂O₂, and ‧ OH) by maize roots and their role in wall loosening and elongation growth. Plant Physiol 136:3114–3123
  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408
  • López-Climent MF, Arbona V, Pérez-Clemente RM, Zandalinas SI, Gómez-Cadenas A (2014) Effect of cadmium and calcium treatments on phytochelatin and glutathione levels in citrus plants. Plant Biol J 16:79–87
  • Meyer AJ (2008) The integration of glutathione homeostasis and redox signaling. J Plant Physiol 165:1390–1403
  • Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175
  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410
  • Nagalakshmi N, Prasad MNV (2001) Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Sci 160:291–299
  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880
  • Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548
  • Pourrut B, Perchet G, Silvestre J, Cecchi M, Guiresse M, Pinelli E (2008) Potential role of NADPH-oxidase in early steps of lead-induced oxidative burst in Vicia faba roots. J Plant Physiol 165:571–579
  • Rahantaniaina MS, Tuzet A, Mhamdi A, Noctor G (2013) Missing links in understanding redox signaling via thiol/disulfide modulation: how is glutathione oxidized in plants? Front Plant Sci 4:477. https://doi.org/10.3389/fpls.2013.00477
  • Rahoui S, Ben C, Chaoui A, Martinez Y, Yamchi A, Rickauer M, Gentzbittel L, El Ferjani E (2014) Oxidative injury and antioxidant genes regulation in cadmium-exposed radicles of six contrasted Medicago truncatula genotypes. Environ Sci Pollut Res Int 21:8070–8083
  • Rentel MC, Knight MR (2004) Oxidative stress-induced calcium signaling in Arabidopsis. Plant Physiol 135:1471–1479
  • Rodríguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gómez M, Del Río LA, Sandalio LM (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ 29:1532–1544
  • Romero-Puertas MC, Rodríguez-Serrano M, Corpas FJ, Gómez M, Del Río LA, Sandalio LM (2004) Cadmium-induced subcellular accumulation of O₂ ˙⁻ and H₂O₂ in pea leaves. Plant Cell Environ 27:1122–1134
  • Ruiz JM, Blumwald E (2002) Salinity-induced glutathione synthesis in Brassica napus. Planta 214:965–969
  • Sakouhi L, Rahoui S, Ben Massoud M, Munemasa S, El Ferjani E, Murata Y, Chaoui A (2016) Calcium and EGTA alleviate cadmium toxicity in germinating chickpea seeds. J Plant Growth Regul 35(4):1064–1073
  • Salin ML, Lyon DS (1983) Iron-containing superoxide dismutase in eukaryotes: localization in chloroplasts in water lily, Nuphar luteum. Oxy radicals and their scavenger systems. Elsevier, New York, pp 344–347
  • Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in scots pine roots. Plant Physiol 127:887–898
  • Schweikert C, Liszkay A, Schopfer P (2002) Polysaccharide degradation by Fenton reaction- or peroxidase-generated hydroxyl radicals in isolated plant cell walls. Phytochemistry 61:31–35
  • Semane B, Dupae J, Cuypers A, Noben JP, Tuomainen M, Tervahauta A, Kärenlampi S, Van Belleghem F, Smeets K, Vangronsveld J (2010) Leaf proteome responses of Arabidopsis thaliana exposed to mild cadmium stress. J Plant Physiol 167:247–254
  • Seregin IV, Ivanov VB (2001) Physiological aspects of cadmium and lead toxic effects on higher plants. Russ J Plant Physiol 48:523–544
  • Sergiev I, Alexieva V, Karanov E (1997) Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Comp Rend Acad Bulg Sci 51:121–124
  • Sharma I (2013) Arsenic stress in plants: an inside story. In: Hakeem KR, Ahmad P, Ozturk M (eds) Crop improvement. Springer, New York, pp 379–400
  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:e217037. https://doi.org/10.1155/2012/217037
  • Shtyrlin VG, Zyavkina YI, Ilakin VS, Garipov RR, Zakharov AV (2005) Structure, stability, and ligand exchange of copper (II) complexes with oxidized glutathione. J Inorg Biochem 99:1335–1346
  • Šimonovičová M, Bočová B, Huttová J, Mistrík I, Tamás L (2005) Effect of cadmium on oxalate oxidase activity in barley roots. Biol Bot 60:463–466
  • Smeets K, Ruytinx J, Semane B, Van Belleghem F, Remans T, Van Sanden S, Vangronsveld J, Cuypers A (2008) Cadmium-induced transcriptional and enzymatic alterations related to oxidative stress. Environ Exp Bot 63:1–8
  • Song Y, Cui J, Zhang H, Wang G, Zhao FJ, Shen Z (2012) Proteomic analysis of copper stress responses in the roots of two rice (Oryza sativa L.) varieties differing in Cu tolerance. Plant Soil 366:647–658
  • Sun Q, Wang XR, Ding SM, Yuan XF (2005) Effects of exogenous organic chelators on phytochelatins production and its relationship with cadmium toxicity in wheat (Triticum aestivum L.) under cadmium stress. Chemosphere 60:22–31
  • Szarka A, Tomasskovics B, Bánhegyi G (2012) The ascorbate-glutathione-α-tocopherol triad in abiotic stress response. Int J Mol Sci 13:4458–4483
  • Tamás L, Dudíková J, Ďurčeková K, Halušková L, Huttová J, Mistrík I, Ollé M (2008) Alterations of the gene expression, lipid peroxidation, proline and thiol content along the barley root exposed to cadmium. J Plant Physiol 165:1193–1203
  • Tausz M, Šircelj H, Grill D (2004) The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J Exp Bot 55:1955–1962
  • Tian S, Lu L, Zhang J, Wang K, Brown P, He Z, Liang J, Yang X (2011) Calcium protects roots of Sedum alfredii H. against cadmium-induced oxidative stress. Chemosphere 84:63–69
  • Wu TM, Hsu YT, Lee TM (2009) Effects of cadmium on the regulation of antioxidant enzyme activity, gene expression, and antioxidant defenses in the marine macroalga Ulva fasciata. Bot Stud 50:25–34
  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179
  • Zagorchev L, Seal CE, Kranner I, Odjakova M (2013) A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 14:7405–7432
  • Zhang H, Lian C, Shen Z (2009) Proteomic identification of small, copper-responsive proteins in germinating embryos of Oryza sativa. Ann Bot 103:923–930
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-58074d82-198a-4738-8604-52533c0b84a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.