Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 3 |
Tytuł artykułu

How Chlorella sorokiniana and its high tolerance to Pb might be a potential Pb biosorbent

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The link between the acute toxicity of heavy metals on algae and the bioadsorption capacity of heavy metals by algae has seldom been reported. In the present study, an acute toxicity experiment was carried out to assess the toxic effects of Pb, Cu, and Cd for Chlorella sorokiniana, and the 96 h IC₅₀ values were 0.249 mg/L, 0.485 mg/L, 46.108 mg/L, and 21.00 mg/L for Cu, Cd, Pb (total), and Pb (free ion), respectively, which implied that Chlorella sorokiniana showed high tolerance to Pb compared to Cu and Cd. Pb distribution analysis indicated that 73.40% to 98.15% of free Pb ions were accumulated on the algae cell wall to avoid further intracellular accumulation, resulting in irreversible metabolic disorders. Then the adsorption capacity of Chlorella was explored. It could be found that the Langmuir model (the R² were 0.988 and 0.962 for living and lifelss cells, respectively) was fit to explain the adsorption equilibrium data and the qₑ calculated by this model were 1.54 and 2.97 mg /10¹⁰ cells for living and lifeless cells, respectively, which was consistent with the experimental result. In the competitive adsorption, Chlorella exhibited a greater affinity for Pb with the higher removal rate compared to Cu and Ni. Therefore, the renewable Chlorella sorokiniana and its dramatic resistance to Pb may serve as a potential biosorbent for Pb in the future.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
26
Numer
3
Opis fizyczny
p.1139-1146,fig.,ref.
Twórcy
autor
  • School of Chemistry and the Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
autor
  • School of Chemistry and the Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
autor
  • School of Chemistry and the Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
autor
  • Shenzhen Polytechnic, Shenzhen 518055, People’s Republic of China
autor
  • School of Chemistry and the Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
autor
  • School of Chemistry and the Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, Republic of China
autor
  • School of Chemistry and the Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
Bibliografia
  • 1. FLOUTY R., ESTEPHANE G. Bioaccumulation and biosorption of copper and lead by a unicellular algae Chlamydomonas reinhardtii in single and binary metal systems: a comparative study. Journal of Environmental Management 111, 106, 2012.
  • 2. NYHOLM N., KALLQVIST T. Methods for growth inhibition toxicity tests with freshwater algae. Environmental Toxicology and Chemistry 8 (8), 689, 1989.
  • 3. CHOUDHARY M., JETLEY U.K., KHAN M.A., ZLUTSHI S., FATMA T. Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5. Ecotoxicology and Environmental Safety 66 (2), 204, 2007.
  • 4. JIANG Y., ZHU Y., HU Z., LEI A., WANG, J. Towards elucidation of the toxic mechanism of copper on the model green alga Chlamydomonas reinhardtii. Ecotoxicology 25 (7), 1417, 2016.
  • 5. OUYANG H., KONG X., HE W., QIN N., HE Q., WANG Y., XU F. Effects of five heavy metals at sublethal concentrations on the growth and photosynthesis of Chlorella vulgaris. Chinese Science Bulletin 57 (25), 3363, 2012.
  • 6. SATOH A., VUDIKARIA L.Q., KURANO N., MIYACHI S. Evaluation of the sensitivity of marine microalgal strains to the heavy metals, Cu, As, Sb, Pb and Cd. Environment International 31(5), 713, 2005.
  • 7. YAP C.K., IAMAIL A., OMAR H., TAN S.G. Toxicities and tolerances of Cd, Cu, Pb and Zn in a primary producer (Isochrysis galbana) and in a primary consumer (Perna viridis). Environment International 29 (8), 1097, 2004.
  • 8. MACFIE S.M., WELBOURM P.M. The cell wall as a barrier to uptake of metal ions in the unicellular green alga Chlamydomonas reinhardtii (Chlorophyceae). Archives Of Environmental Contamination and Toxicology 39 (4), 413, 2000.
  • 9. SUBRAMANIYAM V., SUBASHCHANDRABOSE S.R., THAVAMANI P., CHEN Z., KRISHNAMURTI G.S. R., NAIDU R., MEGHARAJ M. Toxicity and bioaccumulation of iron in soil microalgae. Journal of Applied Phycology 1, 2016.
  • 10. ANDRADE L.R., LEAL R.N., NOSEDA M., DUARTE M.E.R., PEREIRA M.S., MOURÃO P.A., AMADO FILHO G.M. Brown algae overproduce cell wall polysaccharides as a protection mechanism against the heavy metal toxicity. Marine Pollution Bulletin 60 (9), 1482, 2010.
  • 11. RODRIGUES M.S., FERREIRA L.S., DE CARVALHO J.C. M., LODI A., FINOCCHIO E., CONVERTI A. Metal biosorption onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris: multi-metal systems.Journal of Hazardous Materials 217, 246, 2012.
  • 12. FU F., WANG Q. Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management 92 (3), 407, 2011.
  • 13. YALÇIN S., SEZER S., APAK R. Characterization and lead (II), cadmium (II), nickel (II) biosorption of dried marine brown macro algae Cystoseira barbata. Environmental Science and Pollution Research 19 (8), 3118, 2012.
  • 14. MAZNAH W.W., AL-FAWWAZ A.T., SURIF M. Biosorption of copper and zinc by immobilised and free algal biomass, and the effects of metal biosorption on the growth and cellular structure of Chlorella sp. and Chlamydomonas sp. isolated from rivers in Penang, Malaysia. Journal of Environmental Sciences 24 (8), 1386, 2012.
  • 15. PRAVEEN R.S., VIJAYARAGHAVAN K. Optimization of Cu (II), Ni (II), Cd (II) and Pb (II) biosorption by red marine alga Kappaphycus alvarezii. Desalination and Water Treatment 55 (7), 1816, 2015.
  • 16. ZAKHAMA S., DHAOUADI H., M’HENNI F. Nonlinear modelisation of heavy metal removal from aqueous solution using Ulva lactuca algae. Bioresource Technology 102 (2), 786, 2011.
  • 17. QIAN H., SUN Z., SUN L., JIANG Y., WEI Y., XIE J., FU Z. Phosphorus availability changes chromium toxicity in the freshwater alga Chlorella vulgaris. Chemosphere 93 (6), 885, 2013.
  • 18. MOGHADDAM M.R., FATEMI S., KESHTKAR A. Adsorption of lead (Pb 2+) and uranium cations by brown algae; experimental and thermodynamic modeling. Chemical Engineering Journal 231, 294, 2013.
  • 19. ROMERO-GONZÁLEZ M.E., WILLIAMS C.J., GARDINER P.H. Study of the mechanisms of cadmium biosorption by dealginated seaweed waste. Environmental Science & Technology 35 (14), 3025, 2001.
  • 20. CARFAGNA S., LANZA N., SALBITANI G., BASILE A., SORBO S., VONA V. Physiological and morphological responses of Lead or Cadmium exposed Chlorella sorokiniana 211-8K (Chlorophyceae). Springer Plus 2 (1), 1, 2013.
  • 21. LIN K.C., LEE Y.L., CHEN C.Y. Metal toxicity to Chlorella pyrenoidosa assessed by a short-term continuous test.Journal of Hazardous Materials 142 (1), 236, 2007.
  • 22. ZHANG W., XIONG B., CHEN L., LIN K., CUI X., BI H., WANG W. Toxicity assessment of Chlorella vulgaris and Chlorella protothecoides following exposure to Pb (II). Environmental Toxicology and Pharmacology 36 (1), 51, 2013.
  • 23. DEBELIUS B., FORJA J.M., DELVALLS Á., LUBIÁN L.M. Toxicity and bioaccumulation of copper and lead in five marine microalgae. Ecotoxicology and Environmental Safety 72 (5), 1503, 2009.
  • 24. JIANG H., ISLAM M.S., SAZAWA K., HATA N., TAGUCHI S., NAKAMURA S., KURAMITZ H. Development of an electrochemical bioassay based on the alkaline phosphatase activity of Chlamydomonas reinhardtii to assess the toxicity of heavy metals. International Journal of Electrochemical Science 11, 5090, 2016.
  • 25. CAMPBEL P.G.C. Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model. Metal Speciation and Bioavailability in Aquatic Systems, 1995.
  • 26. Hudson R.J. Trace metal uptake, natural organic matter, and the free-ion model. Journal of Phycology 41 (1), 1, 2005.
  • 27. PERALES-VELA H.V., PENA-CASTRO J.M., CANIZARES-VILLANUEVA R.O. Heavy metal detoxification in eukaryotic microalgae. Chemosphere 64 (1), 1, 2006.
  • 28. KADUKOVA J. Surface sorption and nanoparticle production as a silver detoxification mechanism of the freshwater alga Parachlorella kessleri. Bioresource Technology 216, 406, 2016.
  • 29. YANG J.L., LI Y.Y., ZHANG Y.J., ZHANG S.S., WU Y.R., WU P., ZHENG S. J. Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex. Plant Physiology 146 (2), 602, 2008.
  • 30. KRZESŁOWSKA M. The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiologiae Plantarum 33 (1), 35, 2011.
  • 31. ALHOMAIDAN A.A., ALHOURI H.J., ALHAZZANI A.A., ELGAALY G., MOUBAYED N.M. Biosorption of copper ions from aqueous solutions by Spirulina platensis biomass. Arabian Journal of Chemistry 7 (1), 57, 2014.
  • 32. ARECO M.M., HANELA S., DURAN J., DOS SANTOS A.M. Biosorption of Cu (II), Zn (II), Cd (II) and Pb (II) by dead biomasses of green alga Ulva lactuca and the development of a sustainable matrix for adsorption implementation. Journal of Hazardous Materials 213, 123, 2012.
  • 33. DENG L., SU Y., SU H., WANG X., ZHU X. Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. Journal of Hazardous Materials 143 (1), 220, 2007.
  • 34. PISTORIUS A., DEGRIP W.J., EGOROVA-ZACHERNYUK T.A. Monitoring of biomass composition from microbiological sources by means of FT-IR spectroscopy. Biotechnology and Bioengineering 103 (1), 123, 2009.
  • 35. GUPTA V.K., RASTOGI A. Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetics and equilibrium studies. Journal of Hazardous Materials 152 (1), 407, 2008.
  • 36. GOKHALE S.V., JYOTI K.K., LELE S.S. Kinetic and equilibrium modeling of chromium (VI) biosorption on fresh and spent Spirulina platensis/Chlorella vulgaris biomass. Bioresource Technology 99 (9), 3600, 2008.
  • 37. FERREIRA L.S., RODRIGUES M.S., DE CARVALHO J.C.M., LODI A., FINOCCHIO E., PEREGO P., CONVERTI A. Adsorption of Ni 2+, Zn 2+ and Pb 2+ onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris. I. Single metal systems. Chemical Engineering Journal 173 (2), 326, 2011.
  • 38. SULAYMON A.H., MOHAMMED A.A., AL-MUSAWI T.J. Competitive biosorption of lead, cadmium, copper, and arsenic ions using algae. Environmental Science and Pollution Research 20 (5), 3011, 2013.
  • 39. LIU D., LI Z., ZHU Y., LI Z., KUMAR R. Recycled chitosan nanofibril as an effective Cu (II), Pb (II) and Cd (II) ionic chelating agent: adsorption and desorption performance. Carbohydrate Polymers 111, 469, 2014.
  • 40. SULAYMON A.H., ABBOOD D.W., ALI A.H. Competitive adsorption of phenol and lead from synthetic wastewater onto granular activated carbon. Journal of Environmental Science and Engineering 5 (11), 2011.
  • 41. DEMIRBAS A., PEHLIVAN E. Adsorption of Cu(II), Zn(II), Ni(II), Pb(II), and Cd(II) from aqueous solution on Amberlite IR-120 synthetic resin. Journal of Colloid and Interface Science 282 (1), 20,2005.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-571aa055-4af4-4526-ad13-8cfc125dd8c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.