Warianty tytułu
Języki publikacji
Abstrakty
Bone displays suppressed osteogenesis in inflammatory diseases such as sepsis and rheumatoid arthritis. However, the underlying mechanisms have not yet been clearly explained. To identify the gene expression patterns in the bone, we performed Affymetrix Mouse Genome 430 2.0 Array with RNA isolated from mouse femurs 4 h after lipopolysaccharide (LPS) administration. The gene expressions were confirmed with real-time PCR. The serum concentration of the N-terminal propeptide of type I collagen (PINP), a bone-formation marker, was determined using ELISA. A total of 1003 transcripts were upregulated and 159 transcripts were downregulated (more than twofold upregulation or downregulation). Increased expression levels of the inflammation-related genes interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α) were confirmed from in the period 4 h to 72 h after LPS administration using real-time PCR. Gene ontogene analysis found four bone-related categories involved in four biological processes: system development, osteoclast differentiation, ossification and bone development. These processes involved 25 upregulated genes. In the KEGG database, we further analyzed the transforming growth factor β (TGF-β) pathway, which is strongly related to osteogenesis. The upregulated bone morphogenetic protein 2 (BMP2) and downregulated inhibitor of DNA binding 4 (Id4) expressions were further confirmed by real-time PCR after LPS stimulation. The osteoblast function was determined through examination of the expression levels of core binding factor 1 (Cbfa1) and osteocalcin (OC) in bone tissues and serum PINP from 4 h to 72 h after LPS administration. The expressions of OC and Cbfa1 decreased 6 h after administration (p < 0.05). Significantly suppressed PINP levels were observed in the later stage (from 8 h to 72 h, p < 0.05) but not in the early stage (4 h or 6 h, p > 0.05) of LPS stimulation. The results of this study suggest that LPS induces elevated expressions of skeletal system development- and osteoclast differentiation-related genes and inflammation genes at an early stage in the bone. The perturbed functions of these two groups of genes may lead to a faint change in osteogenesis at an early stage of LPS stimulation. Suppressed bone formation was found at later stages in response to LPS stimulation.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.611-622,fig.,ref.
Twórcy
autor
- State Key Laboratory of Trauma, Burns and Combined Injury, Center of Bone Metabolism and Repair, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
autor
- State Key Laboratory of Trauma, Burns and Combined Injury, Center of Bone Metabolism and Repair, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
autor
- State Key Laboratory of Trauma, Burns and Combined Injury, Center of Bone Metabolism and Repair, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
autor
- State Key Laboratory of Trauma, Burns and Combined Injury, Center of Bone Metabolism and Repair, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
Bibliografia
- 1. Calvi, L.M., Adams, G.B., Weibrecht, K.W., Weber, J.M., Olson, D.P., Knight, M.C., Martin, R.P., Schipani, E., Divieti, P., Bringhurst, F.R., Milner, L.A., Kronenberg, H.M. and Scadden, D.T. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425 (2003) 841–846. DOI: 10.1038/nature02040.
- 2. Riedemann, N.C., Guo, R.F. and Ward, P.A. Novel strategies for the treatment of sepsis. Nat. Med. 9 (2003) 517–524. DOI: 10.1038/nm0503-517.
- 3. Walsh, M.C., Kim, N., Kadono, Y., Rho, J., Lee, S.Y., Lorenzo, J. and Choi, Y. Osteoimmunology: interplay between the immune system and bone metabolism. Annu. Rev. Immunol. 24 (2006) 33–63. DOI: 10.1146/annurev.immunol. 24.021605.090646.
- 4. Lee, N.K., Sowa, H., Hinoi, E., Ferron, M., Ahn, J.D., Confavreux, C., Dacquin, R., Mee, P.J., McKee, M.D., Jung, D.Y., Zhang, Z., Kim, J.K., Mauvais-Jarvis, F., Ducy, P., Karsenty, G. Endocrine regulation of energy metabolism by the skeleton. Cell 130 (2007) 456–469. DOI: 10.1016/j.cell.2007.05.047.
- 5. Nair, S.P., Meghji, S., Wilson, M., Reddi, K., White, P. and Henderson, B. Bacterially induced bone destruction: mechanisms and misconceptions. Infect. Immun. 64 (1996) 2371–2380.
- 6. Zhuang, L., Jung, J.Y., Wang, E.W., Houlihan, P., Ramos, L., Pashia, M. and Chole, R.A. Pseudomonas aeruginosa lipopolysaccharide induces osteoclastogenesis through a toll-like receptor 4 mediated pathway in vitro and in vivo. Laryngoscope 117 (2007) 841–847. DOI: 10.1097/MLG.0b013e318033783a.
- 7. Grimm, G., Vila, G., Bieglmayer, C., Riedl, M., Luger, A. and Clodi, M. Changes in osteopontin and in biomarkers of bone turnover during human endotoxemia. Bone 47 (2010) 388–391. DOI: 10.1016/j.bone.2010.04.602.
- 8. Abu-Amer, Y., Ross, F.P., Edwards, J. and Teitelbaum, S.L. Lipopolysaccharide-stimulated osteoclastogenesis is mediated by tumor necrosis factor via its P55 receptor. J. Clin. Invest. 100 (1997) 1557–1565. DOI: 10.1172/JCI119679.
- 9. Lowik, C.W., Nibbering, P.H., van de Ruit, M. and Papapoulos, S.E. Inducible production of nitric oxide in osteoblast-like cells and in fetal mouse bone explants is associated with suppression of osteoclastic bone resorption. J. Clin. Invest. 93 (1994) 1465–1472. DOI: 10.1172/JCI117124.
- 10. Nakamura, T., Kawagoe, Y., Matsuda, T. and Koide, H. Effect of polymyxin B-immobilized fiber on bone resorption in patients with sepsis. Intensive Care Med. 30 (2004) 1838–1841. DOI: 10.1007/s00134-004-2357-7.
- 11. Zhang, Y., Xue, C., Zhu, T., Du, X., Su, N., Qi, H., Yang, J., Shi, Y. and Chen, L. Serum bone alkaline phosphatase in assessing illness severity of infected neonates in the neonatal intensive care unit. Int. J. Biol. Sci. 8 (2012) 30–38.
- 12. Kadono, H., Kido, J., Kataoka, M., Yamauchi, N. and Nagata, T. Inhibition of osteoblastic cell differentiation by lipopolysaccharide extract from Porphyromonas gingivalis. Infect. Immun. 67 (1999) 2841–2846.
- 13. Xing, Q., Ye, Q., Fan, M., Zhou, Y., Xu, Q. and Sandham, A. Porphyromonas gingivalis lipopolysaccharide inhibits the osteoblastic differentiation of preosteoblasts by activating Notch1 signaling. J. Cell. Physiol. 225 (2010) 106–114. DOI: 10.1002/jcp.22201.
- 14. Gilbert, L., He, X., Farmer, P., Boden, S., Kozlowski, M., Rubin, J. and Nanes, M.S. Inhibition of osteoblast differentiation by tumor necrosis factoralpha. Endocrinology 141 (2000) 3956–3964. DOI: 10.1210/ endo.141.11.7739.
- 15. Gilbert, L., He, X., Farmer, P., Rubin, J., Drissi, H., van Wijnen, A.J., Lian, J.B., Stein, G.S. and Nanes, M.S. Expression of the osteoblast differentiation factor RUNX2 (Cbfa1/AML3/Pebp2alpha A) is inhibited by tumor necrosis factor-alpha. J. Biol. Chem. 277 (2002) 2695–2701. DOI: 10.1074/ jbc.M106339200.
- 16. Ding, J., Ghali, O., Lencel, P., Broux, O., Chauveau, C., Devedjian, J.C., Hardouin, P. and Magne, D. TNF-alpha and IL-1beta inhibit RUNX2 and collagen expression but increase alkaline phosphatase activity and mineralization in human mesenchymal stem cells. Life Sci. 84 (2009) 499–504. DOI: 10.1016/j.lfs.2009.01.013.
- 17. Smith, D.D., Gowen, M. and Mundy, G.R. Effects of interferon-gamma and other cytokines on collagen synthesis in fetal rat bone cultures. Endocrinology 120 (1987) 2494–2499. DOI: 10.1210/endo-120-6-2494.
- 18. Canalis, E. Interleukin-1 has independent effects on deoxyribonucleic acid and collagen synthesis in cultures of rat calvariae. Endocrinology 118 (1986) 74–81. DOI:10.1210/endo-118-1-74.
- 19. Centrella, M., McCarthy, T.L. and Canalis, E. Tumor necrosis factor-alpha inhibits collagen synthesis and alkaline phosphatase activity independently of its effect on deoxyribonucleic acid synthesis in osteoblast-enriched bone cell cultures. Endocrinology 123 (1988) 1442–1448. DOI: 10.1210/endo123-3-1442.
- 20. Tsuboi, M., Kawakami, A., Nakashima, T., Matsuoka, N., Urayama, S., Kawabe, Y., Fujiyama, K., Kiriyama, T., Aoyagi, T., Maeda, K. and Eguchi, K. Tumor necrosis factor-alpha and interleukin-1beta increase the Fasmediated apoptosis of human osteoblasts. J. Lab. Clin. Med. 134 (1999) 222–231.
- 21. Christiansen, J.H., Coles, E.G. and Wilkinson, D.G. Molecular control of neural crest formation, migration and differentiation. Curr. Opin. Cell. Biol. 12 (2000) 719–724.
- 22. Zhang, H. and Bradley, A. Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 122 (1996) 2977–2986.
- 23. Wall, N.A. and Hogan, B.L. TGF-beta related genes in development. Curr. Opin. Genet. Dev. 4 (1994) 517–522.
- 24. Rosen, V. BMP2 signaling in bone development and repair. Cytokine Growth Factor Rev. 20 (2009) 475–480. DOI:10.1016/j.cytogfr. 2009.10.018.
- 25. Liu, T., Gao, Y., Sakamoto, K., Minamizato, T., Furukawa, K., Tsukazaki, T., Shibata, Y., Bessho, K., Komori, T. and Yamaguchi, A. BMP-2 promotes differentiation of osteoblasts and chondroblasts in Runx2-deficient cell lines. J. Cell Physiol. 211 (2007) 728–735. DOI: 10.1002/jcp.20988.
- 26. Zamurovic, N., Cappellen, D., Rohner, D. and Susa, M. Coordinated activation of notch, Wnt, and transforming growth factor-beta signaling pathways in bone morphogenic protein 2-induced osteogenesis. Notch target gene Hey1 inhibits mineralization and Runx2 transcriptional activity. J. Biol. Chem. 279 (2004) 37704–33715. DOI: 10.1074/jbc.M403813200.
- 27. Bedford, L., Walker, R., Kondo, T., van Cruchten, I., King, E.R. and Sablitzky, F. Id4 is required for the correct timing of neural differentiation. Dev. Biol. 280 (2005) 386–395. DOI: 10.1016/j.ydbio.2005.02.001.
- 28. Rivera, R. and Murre, C. The regulation and function of the Id proteins in lymphocyte development. Oncogene 20 (2001) 8308–8316. DOI: 10.1038/sj.onc.1205091.
- 29. Huang, R.L., Yuan, Y., Zou, G.M., Liu, G., Tu, J. and Li, Q. LPS-stimulated inflammatory environment inhibits BMP-2-induced osteoblastic differentiation through crosstalk between TLR4/MyD88/NF-kappaB and BMP/Smad signaling. Stem Cells Dev. 23 (2014) 277–289. DOI: 10.1089/scd.2013.0345.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-55b867d5-4103-49fe-bae1-4d06ceba714b