Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 23 | 1 |
Tytuł artykułu

A four-generation feeding study with genetically modified (Bt) maize in laying hens

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A four-generation study with at least 60 laying hens (LSL) and 10 cockerels (LSL) was carried out to investigate the influence of genetically modified maize (Bt 176) on animal health and feed intake, laying performance, feed efficiency, and hatchability of chickens and to compare GM-maize with its near isogenic counterpart. The chickens were divided into two groups (one pen/group) of at least 30 hens each and 3 cockerels. The diets contained 400 (chickens and pullets) or 500 g · kg–1 (laying hens) isogenic or genetically modified maize (Bt 176), respectively. Feed and water were provided ad libitum. Eggs for hatching were collected when the laying hen was aged 31 weeks. In the 31st week of life, brooding eggs were collected and brooded for every group. One-day-old chickens from each group were sex sorted and allocated to one pen per group. There were no significant differences in composition between the two maize varieties. For every generation, as well as the average of all four generations, there was no significant influence on the feed intake of chickens (32.2 and 32.0 g per day), pullets (68.4 and 70.4 g per day) and layers (114.9 and 112.9 g per hen per day for control and Bt-maize), body weight of chickens (652 and 636 g), pullets after 18 weeks (1316 and 1305 g), and laying hens after 31 weeks (1656 and 1626 g for control and Bt-maize), laying intensity (83.5% and 83.3%), fertility of eggs (96.6% and 97.5%), or hatchability of living chicks (86.8% and 88.0% for control and Bt-maize). In conclusion, feeding of 400 (grower) or 500 g · kg–1 (layer period) Bt-maize to chickens, pullets and laying hens for four generations did not significantly influence feed intake, growth, laying or breeding performance compared with an isogenic counterpart.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
23
Numer
1
Opis fizyczny
p.58-63,ref.
Twórcy
autor
  • Institute of Animal Nutrition, Friedrich Loeffler Institute (FLI), Federal Research Institute of Animal Health Bundesallee 50, 38116 Braunschweig, Germany
  • Institute of Animal Nutrition, Friedrich Loeffler Institute (FLI), Federal Research Institute of Animal Health Bundesallee 50, 38116 Braunschweig, Germany
Bibliografia
  • Antoniou M., Robinson C., Fagan J., 2012. GMO Myths and Truths. Earth Open Source. London, pp. 123
  • Baranowski A., Rosochacki S., Parada R., Jaszczak K., Zimny J., Połoszynowicz J., 2006. The effect of diet containing genetically modified triticale on growth and transgenic DNA fate in selected tissues of mice. Anim. Sci. Pap. Rep. 24, 129–142
  • Brake D.G., Evenson D.P., 2004. A generational study of glyphosatetolerant soybeans on mouse fetal, postnatal, pubertal and adult testicular development. Food Chem. Toxicol. 42, 29–36
  • Brake D.G., Thaler R., Evenson D.P., 2004. Evaluation of Bt (Bacillus thuringiensis) corn on mouse testicular development by dual parameter flow cytometry. J. Agr. Food Chem. 52, 2097–2102
  • Buzoianu S.G., Walsh M.C., Rea M.C. et al., 2012a. Effect of feeding Bt maize to sows during gestation and lactation on maternal and offspring immunity and fate of transgenic material. PLoS One 7, 10:e47851
  • Buzoianu S.G., Walsh M.C., Rea M.C., Cassidy J.P., Ryan T.P., Ross R.P., Gardiner G.E., Lawlor P.G., 2012b. Trans-generational effects of feeding genetically modified maize to nulliparous sows and offspring on offspring growth and health. J. Anim. Sci., published ahead of print October 24, 2012, doi:10.2527/jas.2012–5360
  • Chassy B.M., 2010. Food safety and consumer health. New Biotechnol. 27, 534–544
  • Daleprane J.B., Pacheco J.T., Boaventura G.T., 2009b. Evaluation of protein quality from genetically modified and organic soybean in two consecutives generations of Wistar rats. Brazil Arch. Biol. Technol. 52, 841–847
  • EFSA (European Food Safety Agency), 2008. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials. Food Chem. Toxicol. 46, 2–70
  • EFSA, 2011. Guidance for risk assessment of food and feed from genetically modified plants. EFSA J. 9(5), 2150, pp. 37
  • FDA (Food and Drug Administration; Redbook), 2007. Guidance for Industry and other Stakeholders, Toxicological Principles for the Safety Assessment of Food Ingredients. July 2000; Revised July 2007; U.S. Department of Health and Human Services, Food and Drug Administration, Center for Food Safety and Applied Nutrition. http://www.cfsan.fda.gov/guidance.html Flachowsky G. (Editor), 2013. Animal Nutrition with Transgenic Plants. CAB International. Wallingford (UK), pp. 234
  • Flachowsky G., Halle I., Aulrich K., 2005. Long term feeding of Btcorn – a 10 generation study with quails. Arch. Anim. Nutr. 59, 449–451
  • Flachowsky G., Schafft H., Meyer U., 2012. Animal feeding studies for nutritional and safety assessments of feeds from genetically modified plants: a review. J. Consum. Prot. Food Safety 7, 179–194
  • GfE (Gesellschaft für Ernährungsphysiologie), 1999. Recommendations for Energy and Nutrient Requirements of Laying Hens and Broilers (in German). DLG-Verlag,Frankfurt, pp. 185
  • Halle I., Aulrich K., Flachowsky G., 2006. Four generations feeding GMO-corn to laying hens. Proc. Soc. Nutr. Physiol. 15, 114
  • Haryu Y., Taguchi Y., Itakura E., Mikami O., Miura K., Saeki T., Nakajima Y., 2009. Long term biosafety assessment of a genetically modified (GM) plant: the genetically modified (GM) insect-resistant Bt11 corn does not affect the performance of multi-generations or life span of mice. Plant Sci. J. 3, 49–53
  • ILSI, 2003. Best Practices for the Conduct of Animal Studies to Evaluate Crops Genetically Modified for Input Traits. International Life Sciences Institute. Washington, DC, pp. 62
  • ILSI, 2007. Best Practices for the Conduct of Animal Studies to Evaluate Crops Genetically Modified for Output Traits. International Life Sciences Institute. Washington, DC, pp. 194
  • James C., 2013. Global Status of Commercial Transgenic Crops: 2012. ISAAA, Ithaca, NY, http://www.isaaa.org
  • Kiliç A., Akay M.T., 2008. A three-generation study with genetically modified Bt corn in rats: biochemical and histopathological investigation. Food Chem. Toxicol. 46, 1164–1170
  • Kleter G.A., Kok E.J., 2010. Safety assessment of biotechnology used in animal production, including genetically modified (GM) feed and GM animals – a review. Anim. Sci. Pap. Rep. 28, 105–114
  • Korwin-Kossakowska A., Sartowska K., Linkiewicz A., Tomczyk G., Prusak B., Sender G., 2013. Evaluation of the effect of genetically modified RR soya bean and MON 810 maize in the diet of Japanese quail on chosen aspects of their productivity and retention of transgenic DNA in tissues. Arch. Tierzucht 56, 60–70
  • Krzyzowska M., Wincenciak M., Winnicka A., Baranowski A., Jaszczak K., Zimny J., Niemiałtowski M., 2010. The effect of multigenerational diet containing genetically modified triticale on immune system in mice. Pol. J. Vet. Sci. 13, 423–430
  • OECD, 1993. Safety Evaluation of Foods Derived by Modern Biotechnology. Concepts and Principles. OECD, Paris (France)
  • Reuter T., Aulrich K., 2003. Investigations on genetically modified maize (Bt-maize) in pig nutrition: Fate of feed-ingested foreign DNA in pig bodies. Eur. Food Res. Technol. 216, 185–192
  • Rhee G.S., Cho D.H., Won Y.H. et al., 2005. Multigeneration reproductive and developmental toxicity study of bar gene inserted into genetically modified potato on rats. J. Toxicol. Env. Health A 68, 2263–2276
  • Ricroch A.E., Bernheim A., Snell C., Pascal G., Paris A., Kuntz M., 2013. Long-term and multigenerational feeding studies. In: G. Flachowsky G. (Editor) Animal Nutrition with Transgenic Plants. CAB International, pp.112–129
  • Sartowska K., Korwin-Kossakowska A., Sender G., Jozwik A., Prokopiuk M., 2012. The impact of genetically modified plants in the diet of Japanese qails on performance traits and the nutritional value of meat and eggs – preliminary results. Arch. Geflügelk. 76, 140–144
  • SAS, 2002–2008. Institute Inc., SAS 9.2, Cary, NC
  • Séralini G.E., Clair E., Mesnage R., Gress S., Defarge N., Malatesta M., Hennequin D., Spiroux de Vendômois J., 2012. Long term toxicity of a Roundup herbicide and a Roundup-tolerant genetically modified maize. Food Chem. Toxicol. http://dx.doi.org/10.1016/j.fct.2012.08.005 (visited on November 6, 2012)
  • Séralini G.-E., Mesnage R., Clair E., Gress S., Vendomois J.S.de, Cellier D., 2011. Genetically modified crops safety assessments: present limits and possible improvements. Environ. Sci. Eur. 23, 10
  • Snell C., Berheim A., Bergé J.B., Kuntz M., Pascal G., Paris A., Ricroch A., 2012. Assessment of the Health Impact of GE Plant Diets in Long Term and Multigenerational Animal Feeding Trials: a Literature Review. Food Chem. Toxicol. 50, 1134–1148
  • Trabalza-Marinucci M., Brandi G., Rondini C. et al., 2008. A three-year longitudinal study on the effects of a diet containing genetically modified Bt176 maize on the health status and performance of sheep. Livest. Sci. 113, 178–190
  • Tudisco R., Mastellone V., Cutrignelli M.I., Lombardi P., Bovera F., Mirabella N., Piccolo G., Calabro S., Avallone L., Infascelli F., 2010. Fate of transgenic DNA and evaluation of metabolic effects in goats fed genetically modified soybean and in their off springs. Animal 4, 1662–1671
  • Tyshko N.V., Zhminchenko V.M., Pashorina V.A., Selyaskin K.E., Saprykin V.P., Utembaeva N.T., Tutelyan V.A., 2010. Assessment of the impact of GMO of plant origin on rat progeny development in 3 generations (in Russian). Probl. Nutr. 80(1), 14–28
  • Valenta H., Dänicke S., Wolff J., 2002. Comparison of a HPLC- and an ELISA-method for determination of deoxynivalenol in dust of mills, brans and cereals (in German), 114. VDLUFA-Kongressband, p. 255
  • Valenta H., Oldenburg E., 1995. Determination of zearalenon, alphazearalenon and alpha-zerealenol in maize silage with HPLC and GC/MS (in German). VDLUFA-Schriftenreihe 40/1995, 107 VDLUFA-Kongress, Garmisch-Partenkirchen, pp. 957–960
  • VDLUFA-Methodenbuch (Editor), 2012. Band III, 1976 bis 2007. Die chemische Untersuchung von Futtermitteln. 3. Auflage. Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten. VDLUFA (Editor), 3.–8.
  • Velimirow A., Binter C., Zentek J., 2008. Biological effects of transgenic maize NK 603 × MON 810 fed in long term reproduction studies in mice. Research Report of Section IV, Vol. §/2008 of the Bundesministerium für Gesundheit, Familie und Jugend. Vienna (Austria)
  • WPSA (World Poultry Science Association), 1984. The prediction of apparent metabolizable energy values for poultry in compound feeds. Working Group No. 2 – Nutrition. World Poultry Sci. J. 40, 181–182
  • Zhou X.H., Dong Y., Wang,Y., Xiao X., Xu Y., Xu B., Li X., Wei X.S., Liu Q.Q., 2012. A three generation study with high-lysine transgenic rice in Sprague–Dawley rats. Food Chem. Toxicol. 50, 1902–1910
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-53970fa4-8790-475c-bda6-6cfe146d003f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.