Warianty tytułu
Języki publikacji
Abstrakty
Apoptosis is intimately connected to cell cycle regulation via the Retinoblastoma (Rb)-E2F pathway and thereby serves an essential role in tumor suppression by eliminating aberrant hyperproliferative cells. Upon loss of Rb activity, an apoptotic response can be elicited through both p53-dependent and p53-independent mechanisms. While much of this apoptotic response has been attributed to the p19ARF/p53 pathway, increasing evidence has supported the role of protein tyrosine phosphatases (PTPs) in contributing to the initiation of the Rb-E2F-associated apoptotic response. One protein tyrosine phosphatase, PTP-1B, which is induced by the Rb-E2F pathway, has been shown to contribute to a p53-independent apoptotic pathway by inactivating focal adhesion kinase. This report identifies two additional PTPs, SHP-2 and PTP-PEST, that are also directly activated by the Rb-E2F pathway and which can contribute to signal transduction during p53-independent apoptosis.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.422-432,fig.,ref.
Twórcy
autor
- Department of Biology, The University of Texas-Pan American, Edinburg, TX, USA
autor
autor
autor
Bibliografia
- 1. Ghavami, S., Hashemi, M., Ande, S.R., Yeganeh, B., Xiao, W., Eshraghi, M., Bus, C.J., Kadkhoda, K., Wiechec, E., Halayko, A.J. and Los, M. Apoptosis and cancer: mutations within caspase genes. J. Med. Genet. 46 (2009) 497-510.
- 2. Hanahan, D. and Weinberg, R.A. The hallmarks of cancer. Cell 100 (2000) 57-70.
- 3. Lazzerini Denchi, E. and Helin, K. E2F1 is crucial for E2F-dependent apoptosis. EMBO Rep. 6 (2005) 661-668.
- 4. Nahle, Z., Polakoff, J., Davuluri, R.V., McCurrach, M.E., Jacobson, M.D., Narita, M., Zhang, M.Q., Lazebnik, Y., Bar-Sagi, D. and Lowe, S.W. Direct coupling of the cell cycle and cell death machinery by E2F. Nat. Cell Biol. 4 (2002) 859-864.
- 5. Putzer, B.M. E2F1 death pathways as targets for cancer therapy. J. Cell. Mol. Med. 11 (2007) 239-251.
- 6. Stevens, C. and La Thangue, N.B. E2F and cell cycle control: a doubleedged sword. Arch. Biochem. Biophys. 412 (2003) 157-169.
- 7. Hallstrom, T.C. and Nevins, J.R. Balancing the decision of cell proliferation and cell fate. Cell Cycle 8 (2009) 532-535.
- 8. Black, E.P., Hallstrom, T., Dressman, H.K., West, M. and Nevins, J.R. Distinctions in the specificity of E2F function revealed by gene expression signatures. Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 15948-15953.
- 9. Wu, Z., Zheng, S. and Yu, Q. The E2F family and the role of E2F1 in apoptosis. Int. J. Biochem. Cell Biol. 41 (2009) 2389-2397.
- 10. Luo, R.X., Postigo, A.A. and Dean, D.C. Rb interacts with histone deacetylase to repress transcription. Cell 92 (1998) 463-473.
- 11. Lieman, J.H., Worley, L.A. and Harbour, J.W. Loss of Rb-E2F repression results in caspase-8-mediated apoptosis through inactivation of focal adhesion kinase. J. Biol. Chem. 280 (2005) 10484-10490.
- 12. Young, A.P., Nagarajan, R. and Longmore, G.D. Mechanisms of transcriptional regulation by Rb-E2F segregate by biological pathway. Oncogene 22 (2003) 7209-7217.
- 13. Parsons, J.T. Focal adhesion kinase: the first ten years. J. Cell Sci. 116 (2003) 1409-1416.
- 14. Golubovskaya, V.M., Finch, R. and Cance, W.G. Direct interaction of the N-terminal domain of focal adhesion kinase with the N-terminal transactivation domain of p53. J. Biol. Chem. 280 (2005) 25008-25021.
- 15. Zouq, N.K., Keeble, J.A., Lindsay, J., Valentijn, A.J., Zhang, L., Mills, D., Turner, C.E., Streuli, C.H. and Gilmore, A.P. FAK engages multiple pathways to maintain survival of fibroblasts and epithelia: differential roles for paxillin and p130Cas. J. Cell Sci. 122 (2009) 357-367.
- 16. Attwell, S., Roskelley, C. and Dedhar, S. The integrin-linked kinase (ILK) suppresses anoikis. Oncogene 19 (2000) 3811-3815.
- 17. van Nimwegen, M.J. and van de Water, B. Focal adhesion kinase: a potential target in cancer therapy. Biochem. Pharmacol. 73 (2007) 597-609.
- 18. Halle, M., Tremblay, M.L. and Meng, T.C. Protein tyrosine phosphatases: emerging regulators of apoptosis. Cell Cycle 6 (2007) 2773-2781.
- 19. Halle, M., Liu, Y.C., Hardy, S., Theberge, J.F., Blanchetot, C., Bourdeau, A., Meng, T.C. and Tremblay, M.L. Caspase-3 regulates catalytic activity and scaffolding functions of the protein tyrosine phosphatase PEST, a novel modulator of the apoptotic response. Mol. Cell Biol. 27 (2007) 1172-1190.
- 20. Marin, T.M., Clemente, C.F., Santos, A.M., Picardi, P.K., Pascoal, V.D., Lopes-Cendes, I., Saad, M.J. and Franchini, K.G. Shp2 negatively regulates growth in cardiomyocytes by controlling focal adhesion kinase/Src and mTOR pathways Circ. Res. 103 (2008) 813-824.
- 21. Ostman, A., Hellberg, C. and Bohmer, F.D. Protein-tyrosine phosphatases and cancer. Na.t Rev. Cancer 6 (2006) 307-320.
- 22. Shen, Y., Schneider, G., Cloutier, J.F., Veillette, A. and Schaller, M.D. Direct association of protein-tyrosine phosphatase PTP-PEST with paxillin. J. Biol. Chem. 273 (1998) 6474-6481.
- 23. Yu, D.H., Qu, C.K., Henegariu, O., Lu, X. and Feng, G.S. Protein-tyrosine phosphatase Shp-2 regulates cell spreading, migration, and focal adhesion. J. Biol. Chem. 273 (1998) 21125-21131.
- 24. Rafiq, K., Kolpakov, M.A., Abdelfettah, M., Streblow, D.N., Hassid, A., Dell'Italia, L.J. and Sabri, A. Role of protein-tyrosine phosphatase SHP2 in focal adhesion kinase down-regulation during neutrophil cathepsin G-induced cardiomyocytes anoikis. J. Biol. Chem. 281 (2006) 19781-19792.
- 25. Julien, S.G., Dube, N., Hardy, S. and Tremblay, M.L. Inside the human cancer tyrosine phosphatome. Nat. Rev. Cancer 11 (2011) 35-49.
- 26. Ma, D., Zhou, P. and Harbour, J.W. Distinct mechanisms for regulating the tumor suppressor and antiapoptotic functions of Rb. J. Biol. Chem. 278 (2003) 19358-19366.
- 27. Bentires-Alj, M., Paez, J.G., David, F.S., Keilhack, H., Halmos, B., Naoki, K., Maris, J.M., .Richardson, A., Bardelli, A., Sugarbaker, D.J., Richards, W.G., Du, J., Girard, L., Minna, J.D., Loh, M.L., Fisher, D.E., Velculescu, V.E., Vogelstein, B., Meyerson, M., Sellers, W.R. and Neel, B.G. Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res. 64 (2004) 8816-8820.
- 28. Mohi, M.G. and Neel, B.G. The role of Shp2 (PTPN11) in cancer. Curr. Opin. Genet. Dev. 17 (2007) 23-30.
- 29. Angers-Loustau, A., Cote, J.F. and Tremblay, M.L. Roles of protein tyrosine phosphatases in cell migration and adhesion. Biochem. Cell Biol. 77 (1999) 493-505.
- 30. Zheng, Y., Yang, W., Xia, Y., Hawke, D., Liu, D.X. and Lu, Z. Ras-induced and extracellular signal-regulated kinase 1 and 2 phosphorylation-dependent isomerization of protein tyrosine phosphatase (PTP)-PEST by PIN1 promotes FAK dephosphorylation by PTP-PEST. Mol. Cell Biol. 31 (2011) 4258-4269.
- 31. Thompson, L.J., Jiang, J., Madamanchi, N., Runge, M.S. and Patterson, C. PTP-epsilon, a tyrosine phosphatase expressed in endothelium, negatively regulates endothelial cell proliferation. Am. J. Physiol. Heart Circ. Physiol. 281 (2001) H396-403.
- 32. Jiang, Z.X. and Zhang, Z.Y. Targeting PTPs with small molecule inhibitors in cancer treatment. Cancer Metastasis Rev. 27 (2008) 263-272.
- 33. Lessard, L., Stuible, M. and Tremblay, M.L. The two faces of PTP1B in cancer. Biochim. Biophys. Acta 1804 (2010) 613-619.
- 34. Hubbard, S.R. and Miller, W.T. Receptor tyrosine kinases: mechanisms of activation and signaling. Curr. Opin. Cell Biol. 19 (2007) 117-123.
- 35. Lemmon, M.A. and Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 141 (2010) 1117-1134.
- 36. Hunter, T. Tyrosine phosphorylation: thirty years and counting. Curr. Opin. Cell Biol. 21 (2009) 140-146.
- 37. Tonks, N.K. Protein tyrosine phosphatases: from genes, to function, to disease. Nat. Rev. Mol. Cell Biol. 7 (2006) 833-846.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-4b98fd8f-00cc-4a19-a7c9-70341c2d334f