Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 04 |
Tytuł artykułu

Cloning and characterization of the nitrate transporter gene BraNRT2.1 in non-heading Chinese cabbage

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To improve the efficiency of nitrogen use and to reduce the accumulation of nitrates in vegetables, an improved understanding of the mechanisms that regulate nitrate uptake and signaling is essential. Nitrogen use is regulated largely by the nitrate transporter genes, but few studies have examined the nitrate transporter genes in nonheading Chinese cabbage (Brassica rapa ssp. Chinensis Makino), one of the most important leafy vegetables in East Asia. In this study, the nitrate transporter gene BraNRT2.1 was isolated from non-heading Chinese cabbage. The cDNA for this gene contains an open reading frame of 1593 base pairs and encodes a predicted protein of 530 amino acid residues. Analysis of the BraNRT2.1 showed that BraNRT2.1 was expressed mainly in the roots and that the transcription of the gene was induced following exposure to 250 μM and 25 mM nitrate. In addition, GUS staining revealed that the BraNRT2.1 promoter directed expression to the roots. The BraNRT2.1-YFP fusion protein was observed to be localized to the plasma membrane. Finally, we observed that BraNRT2.1 could restore nitrate uptake in the presence of 200 μM nitrate in Arabidopsis thaliana plants lacking AtNRT2.1 function. Together, these results demonstrate that BraNRT2.1 encodes a high-affinity nitrate transporter that participates in nitrate uptake. These findings provide a foundation for future studies and plant breeding to improve the efficiency of nitrogen use and to reduce the accumulation of nitrates in vegetables.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
36
Numer
04
Opis fizyczny
p.815-823,fig.,ref.
Twórcy
autor
  • State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095 Nanjing, China
  • Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Nanjing Agricultural University, Ministry of Agriculture, 210095 Nanjing, China
autor
  • State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095 Nanjing, China
  • Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Nanjing Agricultural University, Ministry of Agriculture, 210095 Nanjing, China
autor
  • Nanjing Institute of Vegetable Science, Nanjing, China
autor
  • State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095 Nanjing, China
  • Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Nanjing Agricultural University, Ministry of Agriculture, 210095 Nanjing, China
autor
  • State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095 Nanjing, China
  • Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Nanjing Agricultural University, Ministry of Agriculture, 210095 Nanjing, China
autor
  • State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095 Nanjing, China
  • Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Nanjing Agricultural University, Ministry of Agriculture, 210095 Nanjing, China
Bibliografia
  • Bartsch H, Ohshima H, Pignatelli B (1988) Inhibitors of endogenous nitrosation: mechanisms and implications in human cancer prevention. Mutat Res 202:307–324
  • Cai C, Wang JY, Zhu YG, Shen QR, Li B, Tong YP, Li ZS (2008) Gene structure and expression of the high-affinity nitrate transport system in ric roots. J Integr Plant Biol 50(4):443–451
  • Camañes G, Pastor V, Cerezo M, García-Andrade J, Vicedo B, García-Agustín P, Flors V (2012) A deletion in NRT2.1 attenuates Pseudomonas syringae-induced hormonal perturbation, resulting in primed plant defenses. Plant Physiol 158:1054–1066
  • Castaings L, Marchive C, Meyer C, Krapp A (2011) Nitrogen signalling in Arabidopsis: how to obtain insights into a complex signalling network. J Exp Bot 62:1391–1397
  • Cerezo M, Tillard P, Filleur S, Muños S, Daniel-Vedele F, Gojon A (2001) Major alterations of the regulation of root nitrate uptake are associated with the mutation of NRT2.1 and NRT2.2 genes in Arabidopsis. Plant Physiol 127:262–271
  • Crawford NM, Glass ADM (1998) Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci 3:389–395
  • De Angeli A, Monachello D, Ephritikhine G, Frachisse JM, Thomine S, Gambale F, Barbier-Brygoo H (2006) The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature 442:939–942
  • Dechorgnat J, Nguyen CT, Armengaud P, Jossier M, Diatloff E, Filleur S, Daniel-Vedele F (2011) From the soil to the seeds: the long journey of nitrate in plants. J Exp Bot 62:1349–1359
  • Delhon P, Gojon A, Tillard P, Passama L (1995) Diurnal regulation of NO₃⁻ uptake in soybean plants I. Changes in NO₃⁻ influx, efflux, and N utilization in the plant during the day/night cycle. J Exp Bot 46:1585–1594
  • Filleur S, Dorbe MF, Cerezo M, Orsel M, Granier F, Gojon A, Daniel-Vedele F (2001) An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake. FEBS Lett 489:220–224
  • Forde BG (2000) Nitrate transporters in plants: structure, function and regulation. Biochim Biophys Acta 1465:219–235
  • Fraisier V, Gojon A, Tillard P, Daniel-Vedele F (2000) Constitutive expression of a putative high-affinity nitrate transporter in Nicotiana plumbaginifolia: evidence for post-transcriptional regulation by a reduced nitrogen source. Plant J 23(4):489–496
  • Gansel X, Muños S, Tillard P, Gojon A (2001) Differential regulation of the nitrate and NH₄⁺ transporter genes AtNrt2.1 and AtAmt1.1 in Arabidopsis: relation with long-distance and local controls by N status of the plant. Plant J 26:143–155
  • Girin T, Lejay L, Wirth J, Widiez T, Palenchar PM, Nazoa P, Touraine B, Gojon A, Lepetit M (2007) Identification of a 150 bp cis-acting element of the AtNRT2.1 promoter involved in the regulation of gene expression by the N and C status of the plant. Plant, Cell Environ 30(11):1366–1380
  • Gojon A, Nacry P, Davidian JC (2009) Root uptake regulation: a central process for NPS homeostasis in plants. Curr Opin Plant Biol 12:328–338
  • Guo J, Morrell-Falvey JL, Labbé JL, Muchero W, Kalluri UC, Tuskan GA, Chen JG (2012) Highly efficient isolation of Populus mesophyll protoplasts and its application in transient expression assays. PLoS ONE 7(9):e44908
  • Ho CH, Lin SH, Hu HC, Tsay YF (2009) CHL1 functions as a nitrate sensor in plants. Cell 138:1184–1194
  • Koltermann M, Moroni A, Gazzarini S, Nowara D, Tischner R (2003) Cloning, functional expression and expression studies of the nitrate transporter gene from Chlorella sorokiniana (strain 211-8 k). Plant Mol Biol 52(4):855–864
  • Krouk G, Tillard P, Gojon A (2006) Regulation of the high-affinity NO₃⁻ uptake system by NRT1.1-mediated NO₃⁻ demand signaling in Arabidopsis. Plant Physiol 142:1075–1086
  • Krouk G, Crawford NM, Coruzzi GM, Tsay YF (2010) Nitrate signaling: adaptation to fluctuating environments. Curr Opin Plant Biol 13:266–273
  • Krouk G, Ruffel S, Gutiérrez RA, Gojon A, Crawford NM, Coruzzi GM, Lacombe B (2011) A framework integrating plant growth with hormones and nutrients. Trends Plant Sci 16:178–182
  • Lejay L, Tillard P, Lepetit M, Olive FD, Filleur S, Daniel-Vedele F, Gojon A (1999) Molecular and functional regulation of two nitrate uptake systems by N- and C-status of Arabidopsis plants. Plant J 18:509–519
  • Lejay L, Gansel X, Cerezo M, Tillard P, Müller C, Krapp A, von Wirén N, Daniel-Vedele F, Gojon A (2003) Regulation of root ion transporters by photosynthesis: functional importance and relation with hexokinase. Plant Cell 15:2218–2232
  • Lejay L, Wirth J, Pervent M, Cross JM, Tillard P, Gojon A (2008) Oxidative pentose phosphate pathway-dependent sugar sensing as a mechanism for regulation of root ion transporters by photosynthesis. Plant Physiol 146:2036–2053
  • Liu TK, Li Y, Zhang CW, Qian Y, Wang Z, Hou XL (2012) Overexpression of FLOWERING LOCUS C (FLC), isolated from non-heading Chinese cabbage (Brassica campestris ssp. chinensis Makino), influences fertility in Arabidopsis. Plant Mol Biol Rep 30:1444–1449
  • Malagoli P, Lainé P, Le Deunff E, Rossato L, Ney B, Ourry A (2004) Modeling nitrogen uptake in oilseed rape cv Capitol during a growth cycle using influx kinetics of root nitrate transport systems and field experimental data. Plant Physiol 134:388–400
  • Miller AJ, Fan XR, Orsel M, Smith SJ, Wells DM (2007) Nitrate transport and signaling. J Exp Bot 58:2297–2306
  • Nazoa P, Vidmar JJ, Tranbarger TJ, Mouline K, Damiani I, Tillard P, Zhuo D, Glass ADM, Touraine B (2003) Regulation of the nitrate transporter gene AtNRT2.1 in Arabidopsis thaliana: responses to nitrate, amino acids and developmental tage. Plant Mol Biol 52(3):689–703
  • Okamoto M, Vidmar JJ, Glass AD (2003) Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: responses to nitrate provision. Plant Cell Physiol 44(3):304–317
  • Okamoto M, Kumar A, Li Z, Wang Y, Siddiqi MY, Crawford NM, Glass AD (2006) High-affinity nitrate transport in roots of Arabidopsis depends of expression of the NAR2-like gene AtNRT3.1. Plant Physiol 140:1036–1046
  • Ono F, Frommer WB, von Wirén N (2000) Coordinated diurnal regulation of low- and high-affinity nitrate transporters in tomato. Plant Biol 2:17–23
  • Orsel M, Filleur S, Fraisier V, Daniel-Vedele F (2002a) Nitrate transport in plants: which gene and which control? J Exp Bot 53:825–833
  • Orsel M, Krapp A, Daniel-Vedele F (2002b) Analysis of the NRT2 nitrate transporter family in Arabidopsis. Structure and gene expression. Plant Physiol 129:886–896
  • Orsel M, Chopin F, Leleu O, Smith SJ, Krapp A, Daniel-Vedele F, Miller AJ (2006) Characterization of a two-component highaffinity nitrate uptake system in Arabidopsis. Physiology and protein–protein interaction. Plant Physiol 142:1304–1317
  • Palechar PM, Kouranov A, Lejay LV, Coruzzi GM (2004) Genomewide patterns of carbon and nitrogen regulation of gene expression validate the combined carbon and nitrogen (CN)-signaling hypothesis in plants. Genome Biol 5:R91
  • Rao TP, Ito O, Matsunaga R, Yoneyama T (1997) Kinetics of ¹⁵N-Labelled nitrate uptake by maize (zea mays L.) root segments. Soil Sci Plant Nutr 43:491–498
  • Santamaria P (2006) Nitrate in vegetables: toxicity, content, intake and EC regulation. J Sci Food Agric 86:10–17
  • Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol 136:2483–2499
  • Tong Y, Zhou JJ, Li Z, Miller AJ (2005) A two-component high-affinity nitrate uptake system in barley. Plant J 41:442–450
  • Trueman LJ, Richardson A, Forde BG (1996) Molecular cloning of higher plant homologues of the high-affinity nitrate transporters of Chlamydomonas reinhardtii and Aspergillus nidulans. Gene 175:223–231
  • Vidal EA, Gutierrez RA (2008) A systems view of nitrogen nutrient and metabolite responses in Arabidopsis. Curr Opin Plant Biol 11:521–529
  • von der Fecht-Bartenbach J, Bogner M, Dynowski M, Ludewig U (2010) CLC-b-mediated NO₃⁻/H⁺ exchange across the tonoplast of Arabidopsis vacuoles. Plant Cell Physiol 51:960–968
  • Walch-Liu P, Filleur S, Gan Y, Forde BG (2005) Signaling mechanisms integrating root and shoot responses to changes in the nitrogen supply. Photosynth Res 83:239–250
  • Wirth J, Chopin F, Santoni V, Viennois G, Tillard P, Krapp A, Lejay L, Daniel-Vedele F, Gojon A (2007) Regulation of root nitrate uptake at the NRT2.1 protein level in Arabidopsis thaliana. J Biol Chem 282:23541–23552
  • Yokoyama T, Kodama N, Aoshima H, Izu H, Matsushita K, Yamada M (2001) Cloning of a cDNA for a constitutive NRT1 transporter from soybean and comparison of gene expression of soybean NRT1 transporters. Biochim Biophys Acta 1518(1–2):79–86
  • Yong Z, Kotur Z, Glass AD (2010) Characterization of an intact twocomponent high-affinity nitrate transporter from Arabidopsis roots. Plant J 63:739–748
  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 7:1565–1572
  • Zhuo D, Okamoto M, Vidmar JJ, Glass AD (1999) Regulation of a putative high-affinity nitrate transporter (Nrt2.1At) in roots of Arabidopsis thaliana. Plant J 17:563–568
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-4ade8b9e-b062-4f10-ba6c-e05930ad4400
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.