Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 1 |
Tytuł artykułu

Bioremediation of oil-based paint from aqueous media by novel indigenous Brevibacillus parabrevis strain NAP3 and its toxicity assessment

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study sought to explore the bioremediation of oil-based paint from aqueous media using indigenous bacterial isolate Brevibacillus parabrevis strain NAP3 and its toxicity assessment against prokaryotic and eukaryotic biological models. The bacterial isolate was initially screened for bioremediation potential in mineral salts medium containing oil-based paint (conc. 300 ppm, w/v) under shake flask settings. Moreover, the percentage removal of oil-based paint from aqueous media was investigated using a spectrophotometer at 285 nm under two different experimental conditions, i.e., with and without glucose. Evidently, the bacterial isolate displayed maximum oil-based paint removal of 83% in flasks containing glucose as an additional carbon source after 14 days of the treatment, whereas without glucose supplementation it reached up to 78%. The Fourier transform infrared (FTIR) spectra showed noticeable biodegradative changes of the oil-based paint relevant to peaks in the wave number frequency range of 800-600 cm⁻¹, 1,034 to 1,299 cm⁻¹, 1,690 to 1,725 cm⁻¹, 2,857 to 3,000 cm⁻¹, and 3,200 to 3,400 cm⁻¹ (corresponding to C-H, C-O-N, C-O-C, and CH₂ aliphatic stretch and terminal CH₃ bonds, and N-H bonds, respectively, in treated samples as compared to controls; non-inoculated samples). After treatment, the cellfree supernatants containing oil-based paints displayed reduced cytotoxicity against brine shrimp larvae, phytotoxicity against wild reddish seeds, and antimicrobial activity against selected pathogenic bacteria and fungi, which indicated the possible use of B. parabrevis as potential oil-based paint-degrading bacterium in order to restore paint-polluted environments.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
26
Numer
1
Opis fizyczny
p.229-237,fig.,ref.
Twórcy
  • Department of Microbiology, Shah Abdul Latif University, 66020 Khairpur, Sindh, Pakistan
autor
  • Department of Microbiology, Shah Abdul Latif University, 66020 Khairpur, Sindh, Pakistan
  • Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320 Pakistan
autor
  • Department of Microbiology, Shah Abdul Latif University, 66020 Khairpur, Sindh, Pakistan
autor
  • Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320 Pakistan
autor
  • Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320 Pakistan
autor
  • Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320 Pakistan
autor
  • Department of Microbiology, Shah Abdul Latif University, 66020 Khairpur, Sindh, Pakistan
Bibliografia
  • 1. CHUN-LEI Z., LIANG L., CHUN-BO H.,DONG-SHENG W. Biodegradation of acetaldehyde by microorganisms in biological activated carbon filters. J. Bioremediat. Biodegrad. 4 (184), 2, 2013.
  • 2. STREITBERGER H.-J. Von High zu Zero VOC. In Contribution at Congress GDCh, Division Paint Chemistry, Lüneburg/Germany, 2007.
  • 3. SAFA M., ALEMZADEH I., VOSSOUGHI M. Biodegradability of oily wastewater using rotating biological contactor combined with an external membrane. J. Environ. Health Sci. Eng. 12 (1), 117, 2014.
  • 4. CANCER I.A.F.R.O. Some organic solvents, resin monomers and related compounds, pigments and occupational exposures in paint manufacture and painting. IARC Monogr. Eval. Carcinog. Risks Hum. 47, 1990.
  • 5. TESTA A., FESTA F., RANALDI R., GIACHELIA M., TIRINDELLI D., DE MARCO A., OWCZAREK M., GUIDOTTI M.,COZZI R. A multi-biomarker analysis of DNA damage in automobile painters. Environ. Mol. Mutagen. 46 (3), 182, 2005.
  • 6. AZHDARPOOR A., MORTAZAVI B.,MOUSSAVI G. Oily wastewaters treatment using Pseudomonas sp. isolated from the compost fertilizer. J. Environ. Health Sci. Eng. 12 (1), 77, 2014.
  • 7. AKCIL A. Destruction of cyanide in gold mill effluents: biological versus chemical treatments. Biotechnol. Adv. 21 (6), 501, 2003.
  • 8. GURBUZ F., CIFTCI H., AKCIL A., KARAHAN A. G. Microbial detoxification of cyanide solutions: a new biotechnological approach using algae. Hydrometallurgy. 72 (1), 167, 2004.
  • 9. GURBUZ F., CIFTCI H., AKCIL A. Biodegradation of cyanide containing effluents by Scenedesmus obliquus. J. Hazard. Mater. 162 (1), 74, 2009.
  • 10. DASH R.R., GAUR A., BALOMAJUMDER C. Cyanide in industrial wastewaters and its removal: A review on biotreatment. J. Hazard. Mater. 163 (1), 1, 2009.
  • 11. MIRIZADEH S., YAGHMAEI S., NEJAD Z.G. Biodegradation of cyanide by a new isolated strain under alkaline conditions and optimization by response surface methodology (RSM). J. Environ. Health Sci. Eng. 12, 85, 2014.
  • 12. KUMAR V., KUMAR V., BHALLA T.C. In vitro cyanide degradation by Serretia marcescens RL2b. Int. J. Environ. Sci. 3, 1985, 2013.
  • 13. SHETE H.G., KAPDNIS B.P. Cyanide hydratase production using acclimatized strain of Streptomyces phaeoviridae and its characterization. Int. J. Bioassays. 2 (08), 1098, 2013.
  • 14. GORBUSHINA A.A., HEYRMAN J., DORNIEDEN T., GONZALEZ-DELVALLE M., KRUMBEIN W.E., LAIZ L., PETERSEN K., SAIZ-JIMENEZ C., SWINGS J. Bacterial and fungal diversity and biodeterioration problems in mural painting environments of St. Martins church (Greene-Kreiensen, Germany). Int. Biodeterior. Biodegr. 53 (1), 13, 2004.
  • 15. RAVIKUMAR H.R., RAO S.S., KARIGAR C.S. Biodegradation of paints: a current status. Indian. J. Sci. Technol. 5 (1), 1977, 2012.
  • 16. SUBATHRA M.K., IMMANUEL G., SURESH A.H. Isolation and identification of hydrocarbon-degrading bacteria from Ennore creek. Bioinformation. 9 (3), 150, 2013.
  • 17. TURNER D.A., PICHTEL J., RODENAS Y., MCKILLIP J., GOODPASTER J.V. Microbial degradation of gasoline in soil: comparison by soil type. J. Bioremediat. Biodegrad. 5, 216, 2014.
  • 18. WIESER M., SCHUMANN P., MARTIN K., ALTENBURGER P., BURGHARDT J., LUBITZ W., BUSSE H.-J. Agrococcus citreus sp. nov., isolated from a medieval wall painting of the chapel of Castle Herberstein (Austria). Int. J. Syst. Evol. Microbiol. 49 (3), 1165, 1999.
  • 19. OMAR O.C., KIRSTEEN O.P., ONYANGO DAVID M., ANTHONY S. Molecular clustering of microbial flora and Bacterial degradation of textile dyes by isolates from contaminated soils. Biotechnology. 54, 12452, 2013.
  • 20. YONETANI R., IKATSU H., MIYAKE-NAKAYAMA C., FUJIWARA E., MAEHARA Y., MIYOSHI S.-I., MATSUOKA H., SHINODA S. Isolation and characterization of a 1, 3-dichloro-2-propanol-degrading bacterium. J. Health Sci. 50 (6), 605, 2004.
  • 21. TAMURA K., NEI M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10 (3), 512, 1993.
  • 22. TAMURA K., NEI M., KUMAR S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. U.S.A. 101 (30), 11030, 2004.
  • 23. TAMURA K., STECHER G., PETERSON D., FILIPSKI A., KUMAR S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30 (12), 2725, 2013.
  • 24. JAMIL M., UL HAQ I., MIRZA B., QAYYUM M. Isolation of antibacterial compounds from Quercus dilatata L. through bioassay guided fractionation. Ann. Clin. Microbiol. Antimicrob. 11 (1), 11, 2012.
  • 25. SAXENA A., SINGH D.V., JOSHI N.L. Autotoxic effects of pearl millet aqueous extracts on seed germination and seedling growth. J. Arid Environ. 33 (2), 255, 1996.
  • 26. ULLAH N., HAQ I.U., MIRZA B. Phytotoxicity evaluation and phytochemical analysis of three medicinally important plants from Pakistan. Toxicol. Ind. Health. 31 (5), 389, 2015.
  • 27. BANERJEE A., GHOSHAL A.K. Isolation and characterization of hyper phenol tolerant Bacillus sp. from oil refinery and exploration sites. J. Hazard. Mater. 176 (1), 85, 2010.
  • 28. SOUDI M.R., KOLAHCHI N. Bioremediation potential of a phenol degrading bacterium, Rhodococcus erythropolis SKO-1. Prog. J. Biol. Sci. 1, (1), 31, 2011.
  • 29. MARCHESI J.R.,WEIGHTMAN A.J. Comparing the dehalogenase gene pool in cultivated α-halocarboxylic acid-degrading bacteria with the environmental metagene pool. Appl. Environ. Microbiol. 69 (8), 4375, 2003.
  • 30. ANWAR S., LIAQUAT F., KHAN Q.M., KHALID Z. M., IQBAL S. Biodegradation of chlorpyrifos and its hydrolysis product 3, 5, 6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1. J. Hazard. Mater. 168 (1), 400, 2009.
  • 31. MALONEY S.E., MAULE A., SMITH A.R.W. Transformation of synthetic pyrethroid insecticides by a thermophilic Bacillus sp. Arch. Microbiol. 158 (4), 282, 1992.
  • 32. ZHANG C., WANG S., YAN Y. Isomerization and biodegradation of beta-cypermethrin by Pseudomonas aeruginosa CH7 with biosurfactant production. Bioresour. Technol. 102 (14), 7139, 2011.
  • 33. ODOKUMA L.O., BEREBON D.P., OGBONNA C.B. Potential biodeteriogens of indoor and outdoor surfaces (coated with gloss, emulsion and textcoat paints). IOSR J. Pharm. Biol. Sci. 7 (1), 12, 2013.
  • 34. LOH K.-C., TAN C.-P. Effect of additional carbon sources on biodegradation of phenol. Bulletin of environmental contamination and toxicology. 64 (6), 756, 2000.
  • 35. SEGNEANU A.E., GOZESCU I., DABICI A., SFIRLOAGA P., SZABADAI Z. Organic Compounds FT-IR Spectroscopy. In Macro To Nano Spectroscopy, J. UDDIN (Ed.), InTech, 145, 2012.
  • 36. NIU Y., DEFOIRDT T., BARUAH K., VAN DE WIELE T., DONG S.,BOSSIER P. Bacillus sp. LT3 improves the survival of gnotobiotic brine shrimp (Artemia franciscana) larvae challenged with Vibrio campbellii by enhancing the innate immune response and by decreasing the activity of shrimp-associated vibrios. Vet. Microbiol. 173 (3), 279, 2014.
  • 37. ROY A.S., BARUAH R., BORAH M., SINGH A.K., BORUAH H.P.D., SAIKIA N., DEKA M., DUTTA N., BORA T.C. Bioremediation potential of native hydrocarbon degrading bacterial strains in crude oil contaminated soil under microcosm study. Int. Biodeterior. Biodegr. 94, 79, 2014.
  • 38. ALKOTAINI B., ANUAR N., KADHUM A.A.H., SANI A.A.A. Detection of secreted antimicrobial peptides isolated from cell-free culture supernatant of Paenibacillus alvei AN5. J. Ind. Microbiol. Biotechnol. 40 (6), 571, 2013.
  • 39. MILILLO S.R., STORY R.S., PAK D., O’BRYAN C.A., CRANDALL P.G., RICKE S.C. Antimicrobial properties of three lactic acid bacterial cultures and their cell free supernatants against Listeria monocytogenes. J. Environ. Sci. Health B. 48 (1), 63, 2013.
  • 40. COMPAORÉ C.S., NIELSEN D.S., OUOBA L.I., BERNER T.S., NIELSEN K.F., SAWADOGO-LINGANI H., DIAWARA B., OUÉDRAOGO G.A., JAKOBSEN M., THORSEN L. Co-production of surfactin and a novel bacteriocin by Bacillus subtilis subsp. subtilis H4 isolated from Bikalga, an African alkaline Hibiscus sabdariffa seed fermented condiment. Int. J. Food Microbiol. 162 (3), 297, 2013.
  • 41. SAITOU N., NEI M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4 (4), 406, 1987.
  • 42. FELSENSTEIN J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 783, 1985.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-499cd170-c1a8-4137-a805-59ca666caefe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.