Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
The control measures for deterioration of aerobic activated sludge were experimented. Wastewater samples with different pH, temperature, SVI, and MLSS were investigated to detect the cause of sludge deterioration. The results show that after being operated at high S₂O₃²⁻ (which could lead to a pH decrease) loading in an A/O biological reactor treated for coking wastewater, though the pH was controlled at about 7.0 by the addition of NaOH, the COD removal efficiency was decreased deeply. The MLSS decreased from 3,800-4,300 mg/L to 2,020 mg/L after loading of S₂O₃²⁻ and NaOH in the oxic unit of A/O biological reactor for 12 days. The COD removal efficiencies and MLSS concentrations were decreased sharply when the wastewater’s temperature was over 30ºC, which indicates the bulking of activated sludge in the oxic unit of A/O biological reactor. The results suggest that it cannot inhibit the occurrence of sludge deterioration only by controlling the pH in the oxic unit of an A/O biological reactor. Although the addition of NaOH could inhibit sludge bulking, the decreased MLSS concentration would significantly reduce the COD removal efficiency. The decline of COD removal efficiency may be due to the high temperature leading to sludge death.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.1877-1880,fig.,ref.
Twórcy
autor
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China
autor
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China
autor
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China
autor
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China
autor
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China
autor
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China
Bibliografia
- 1. FELFOLDI T., SZEKELY A. J., GORAL R., BARKACS K., SCHEIRICH G., ANDRAS J., RACZ A., MARIALIGETI K. Polyphasic bacterial community analysis of an aerobic activated sludge removing phenols and thiocyanate from coke plant effluent, Bioresource Technol., 101, 3406, 2010.
- 2. GHOSE M. K. Complete physico-chemical treatment for coke plant effluents, Water Res., 36, 1127, 2002.
- 3. ZHU X. P., NI J. R., LAI P. Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes, Water Res., 43, 4347, 2009.
- 4. XIONG Z. L., CHENG X., SUN D. Z. Pretreatment of heterocyclic pesticide wastewater using ultrasonic/ozone combined process, J. Hazard. Mater., 23, 725, 2011.
- 5. LAI P., ZHAO H. Z., ZENG M., NI J.R. Study on treatment of coking wastewater by biofilm reactors combined with zero-valent iron process, J. Hazard. Mater., 162, 1423, 2009.
- 6. CHEN T. H., HUANG X.M., PAN M., JIN S., PENG S. H., FALLGREN P. H. Treatment of coking wastewater by using manganese and magnesium ores, J. Hazard. Mater., 168, 843, 2009.
- 7. ZHU X. B., TIAN J. P., LIU R., CHEN L. J. Optimization of Fenton and electro-Fenton oxidation of biologically treated coking wastewater using response surface methodology, Sep. Purif. Technol., 81, 444, 2011.
- 8. ZHU X. P., NI J. R., LAI P. Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes, Water Res., 43, 4347, 2009.
- 9. CHAO Y. M., TSENG I. C., CHANG J. S. Mechanism for sludge acidfication in aerobic treatment of cooking wastewater, J. Hazard. Mater., B137, 1781, 2006.
- 10. MARTINS A. M. P., LOOSDRECHT M. C. M., HEIJNEN J. J. Effect of dissolved oxygen concentration on the sludge settle ability, Appl. Microbiol. Biot., 62, 586, 2003.
- 11. MARTINS A. M. P., LOOSDRECHT M. C. M., HEIJNEN J. J. Effect of feeding pattern and storage on the sludge settle ability under aerobic conditions, Water Res., 37, 2555, 2003.
- 12. XI D. L., SUN Y. S., LIU X. Y. Higher Education Press. Environmental Monitoring, Beijing: Higher Education Press, pp. 3-141, 2004.
- 13. WILLIAMS T.M., UNZ R.F. The nutrition of Thiothrix, Type 021N, Beggiatoa and Leucothrix strains, Water Res. 23, 15, 1989.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-4919da58-a15b-42b8-adc6-8c69529e2c8e