Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2002 | 04 | 2 |
Tytuł artykułu

Craseonycteris thonglongyai (Chiroptera: Craseonycteridae) is a rhinolophoid: molecular evidence from cytochrome b

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Craseonycteris thonglongyai (Chiroptera: Craseonycteridae), an enigmatic taxon which shares morphological traits with both Rhinopomatidae and Emballonuridae was for the first time investigated with the aid of molecular phylogenetic techniques. Three methods of phylogenetic inference, parsimony, maximum-likelihood, and Bayesian phylogenetics were used. Based on 402 bp of DNA sequence from the mitochondrial cytochrome b gene, placement of Craseonycteridae within the superfamily Rhinolophoidea was demonstrated. Our results also suggest close proximity of Craseonycteridae to Hipposideridae rather than to Rhinopomatidae, close relationships between Megadermatidae and Rhinolophidae, sister group position of Pteropodidae to Rhinolophoidea, and closer affiliation of Nycteridae with the infraorder Yangochiroptera. Spectral analysis was in agreement with all these outcomes except for closer relationships of Craseonyeteris with Rhinopomatidae.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
04
Numer
2
Opis fizyczny
p.107-120,fig.,ref.
Twórcy
autor
  • Department of Zoology, faculty of Science, Charles University, Vinicna 7, 128 44 prague, Czech Republic
autor
Bibliografia
  • Bates, P. J. J., T. Nwe, K. M. Swe, and S. S. H. Bu. 2001. Further new records of bats from Myanmar (Burma), including Craseonycteris thonglongyai Hill, 1974 (Chiroptera: Craseonycteridae). Acta Chiropterologica, 3: 33-41.
  • Bogdanowicz, W., and R. D. Owen. 1998. In the Minotaur’s labyrinth: phylogeny of the bat family Hipposideridae. Pp. 27-42, in Bat biology and conservation (T. H. Kunz and P. A. Racey, eds.). Smithsonian Institution Press, Washington, D.C., xiv + 365 pp.
  • Charleston, M. A. 1998. Spectrum: spectral analysis of phylogenetic data. Bioinformatics, 14: 98-99.
  • Corbet, G. B., and J. E. Hill. 1992. The Mammals of the Indomalayan Region: a systematic review. Natural History Museum Publishing, Oxford University Press, Oxford, 488 pp.
  • Daugbjerg, N., and R. A. Andersen. 1997. Phylogenetic analyses of the rbcL sequences from hapto- phytes and heterokont algae suggest their chloro- plasts are unrelated. Molecular Biology and Evolution, 14: 1242-1251.
  • Efron, B., E. Halloran, and S. Holmes. 1996. Bootstrap confidence levels for phylogenetic trees. Proceedings of the National Academy of Science of the USA, 93: 13429-13434.
  • Faith, D. P. 1991. Cladistic tests for monophyly and nonmonophyly. Systematic Zoology, 40: 366-375.
  • Faith, D. P., and P. S. Cranston. 1991. Could a cladogram this short have arisen by chance alone? On permutation tests for cladistic structure. Cladistics, 7: 1-28.
  • Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution, 17: 368-376.
  • Goldman, N., J. P. Anderson, and A. G. Rodrigo. 2000. Likelihood-based tests of topologies in phylogenetics. Systematic Biology, 49: 652-670.
  • Hand, S. J., and J. A. W. Kirsch. 1998. A southern origin of the Hipposideridae (Microchiroptera)? Evidence from the Australian fossil record. Pp. 72-90, in Bat biology and conservation (T. H. Kunz and P. A. Racey, eds.). Smithsonian Institution Press, Washington, D.C., xiv + 365 pp.
  • Hasegawa, M„ H. Kishino, and T. Yano. 1985. Dating of the human-ape splitting by the molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22: 160-174.
  • Hendy, M. D., and D. Penny. 1993. Spectral analysis of phylogenetic data. Journal of Classification, 10: 5-24.
  • Hill, J. E. 1974. A new family, genus and species of bat (Mammalia: Chiroptera) from Thailand. Bulletin of British Museum (Natural History), Zoology, 27: 301-336.
  • Hill, J. E. 1982. A review of the leaf-nosed bats Rhinonycteris, Cleotis and Triaenops (Chiropte­ra, Hipposideridae). Bonner zoologische Beitra- ge, 33: 165-186.
  • Hill, J. E., and S. E. Smith 1981. Craseonycteris thonglongyai. Mammalian Species, 160: 1-4.
  • Hillis, D. M., and J. J. Bull. 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analyses. Systematic Biology, 42: 182-192.
  • Hillis, D. M., and J. P. Huelsenbeck. 1992. Signal, noise, and reliability in molecular phylogenetic analyses. Journal of Heredity, 83: 189-195.
  • Hoelzel, A. R., and A. Green. 1992. Analysis of population-level variation by sequencing PCR- amplified DNA. Pp. 159-187, in Molecular genetic analysis of populations: a practical approach (A. R. Hoelzel, ed.). Oxford University Press, New York, 468 pp.
  • Horáček, I. 2001: On the early history of vespertilionid bats in Europe: the Lower Miocene record from the Bohemian Massif. Lynx (N.S.), 32: 123-154
  • Huang, X. 1992. A contig assembly program based on sensitive detection of fragment overlaps. Genomics, 14: 18-25.
  • Huelsenbeck, J. P., and F. R. Ronquist. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17: 754-755.
  • Huelsenbeck, J. P., F. Ronquist, R. Nielsen, and J. P. Bollback. 2001. Bayesian inference of phy- logeny and its impact on evolutionary biology. Science, 294: 2310-2314.
  • Jones, K. E., A. Purvis, A. MacLarnon, O. R. Bininda-Emonds, and N. B. Simmons. 2002. A phylogenetic supertree of the bats (Mammalia: Chiroptera). Biological Reviews of the Cambridge Philosophical Society, 77: 223-259.
  • Juste, J. B., Y. Alvarez, E. Tabares, A. Garrido- Pertierra, C. Ibanez, and J. M. Bautista. 1999. Phylogeography of African fruitbats (Mega- chiroptera). Molecular Phylogenetics and Evolution, 13: 596-604.
  • Kennedy, M., A. M. Paterson, J. C. Morales, S. Parsons, A. P. Winnington, and H. G. Spencer. 1999. The long and short of it: branch lengths and the problem of placingthe New Zealand short-tailed bat, Mystacina. Molecular Phylogenetics and Evolution, 13: 405-416.
  • Kirsch, J. A. W., and J. M. Hutcheon. 1997. Further on the possibility that microchiropteran are para- phyletic. Bat Research News, 37: 138.
  • Kirsch, J. A. W., and J. D. Pettigrew. 1998. Base compositional biases and bat problem. II DNA- hybridization trees based on tracers enriched for AT- or CG-content. Philosophical Transactions, Biological Sciences, 353: 381-388.
  • Kishino, H., and M. Hasegawa. 1989. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. Journal of Molecular Evolution, 29: 170 179.
  • Koopman, K. F., 1993. Order Chiroptera. Pp. 137-241, in Mammal species of the world: a taxonomic and geographic reference (D. E. Wilson and D. M. Reeder, eds.). 2nd ed. Smithsonian Institution Press, Washington, D.C., 1206 pp.
  • Koopman, K. F., 1994. Chiroptera: systematics. Handbuch der Zoologie, VIII, Mammalia, Part 60. Walter de Gruyter, Berlin, 216 pp.
  • Kumar, S., K. Tamura, I. B. Jakobsen, and M. Nei. 2001. MEGA2: Molecular Evolutionary Genetics Analysis software. Bioinformatics, 17: 1244-1245.
  • Lekagul, B., and J. A. McNeely. 1977. Mammals of Thailand. Sahakambhat, Bangkok, 758 pp.
  • Margoliash, E. 1963. Primary structure and evolution of cytochrome c. Proceedings of the National Academy of Science of the USA, 50: 672-679.
  • McCarthy, C. 1996. Chromas, version 1.4, School of Biomolecular and Biomedical Science, Griffith University, Brisbane, Queensland.
  • Miller, G. S., Jr. 1907. The families and genera of bats. Smithsonian Institute Bulletin, 57: 1-282.
  • Murphy, W. J„ E. Eizirik, W. E. Johnson, Y. P. Zhang, O. A. Ryder, and S. J. O’Brien. 2001a. Molecular phylogenetics and the origins of placental mammals. Nature, 409: 614-618.
  • Murphy, W. J., E. Eizirik, S. J. O'Brien, O. Madsen, M. Scally, C. J. Douady, E. Teeling, O. A. Ryder, M. J. Stanhope, W. W. de Jong, and M. S. Springer. 2001b. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science, 294: 2348-2351.
  • Nei, M., and S. Kumar. 2000. Molecular evolution and phylogenetics. Oxford University Press, New York, 335 pp.
  • Nikaido, M., K. Kawai, Y. Cao, M. Harada, S. Tomita, N. Okada, and M. Hasegawa. 2001. Maximum likelihood analysis of the complete mitochondrial genomes of eutherians and areevaluation of the phytogeny of bats and insectivores. Journal of Molecular Evolution, 53: 508-516.
  • Nowak, R. M. 1997. Mammals of the world. Johns Hopkins University Press, Baltimore, 1629 pp.
  • Page, R. D. M., and E. C. Holmes. 2000. Molecular evolution: a phylogenetic approach. Blackwell Science, Oxford, 346 pp.
  • Posada, D., and Crandall, K. A. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics, 14: 817-818.
  • Remy, J. A., J.-Y. Crochet, B. Sige, J. Sudre, L. de Bonis, M. Vianey-Liaud, M. Godinot, J.-L. Hartenberger, B. Lange-Badre, and B. Comte. 1987. Biochronologie des phosphorites du Quercy: Mise a jour des listes fauniques et nouveaux gisements de mammiferes fossiles. Miincher Geowissenschafte Abhandlungen (A), 10: 169-188.
  • Simmons, N. B. 1998. A reappraisal of interfamilial relationship of bats. Pp. 3-26, in Bat biology and conservation (T. H. Kunz and P. A. Racey, eds.). Smithsonian Institution Press, Washington, D.C., xiv + 365 pp.
  • Simmons, N. B., and J. H. Geisler. 1998. Phylogenetic relationship of Icaronycteris, Archaeonyc- teris, Hassianycteris, and Palaeochiropteris to extant bat lineages, with comment on the evolution of echolocation and foraging strategies in Microchiroptera. Bulletin of American Museum of Natural History, 235: 1-185.
  • Smith, M. F., and J. L. Patton. 1991. Variation in mitochondrial cytochrome b sequence in natural populations of South American akodontine rodents (Muridae: Sigmodontinae). Molecular Biology and Evolution, 8: 85-103.
  • Springer, M. K., E. C. Teeling, O. Madsen, M. J. Standhope, and W. W. de Jong. 2001. Integrated fossil and molecular data reconstruct bat echolocation. Proceedings of the National Academy of Science of the USA, 98: 6241-6246.
  • Sudman, P. D., L. J. Barkley, and M. S. Hafner. 1994. Familial affinity of Tomopeas ravus (Chi- roptera) based on protein electrophoretic and cytochrome b sequence data. Journal of Mammalogy, 75: 365-377.
  • Surlykke A., L. A. Miller, B. Mohl, B. B. Anderen, J. Christensendalsgaard, and M. B. Jorgensen. 1993. Echolocation in the very small bats from Thailand — Craseonycteris thonglongyai and Myotis siligorensis. Behavioral Ecology and Sociobiology, 33: 1-12.
  • Swofford, D. L. 1993. PAUP: Phylogenetic analysis using parsimony. Version 3.1.1. Laboratory of Systematics, Smithsonian Institution, Washington, D.C.
  • Tajima, F. 1993. Simple methods for testing the molecular evolutionary clock hypothesis. Genetics, 135: 599-607.
  • Teeling, E. C., M. Scally, J. D. Kao, M. L. Romagnoll, M. S. Springer, and M. J. Stanhope. 2000. Molecular evidence regarding the origin of echolocation and flight in bats. Nature, 403: 188-192.
  • Teeling, E. C„ O. Madsen, R. A. Van Den Bussche, W. W. de Jong, M. J. Stanhope, and M. S. Springer. 2002. Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats. Proceedings of the National Academy of Science of the USA, 99: 1431-1436.
  • Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22: 4673-4680.
Uwagi
rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-465c039f-e7a1-4b5b-af72-20b906590082
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.