Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 34 | 2 |
Tytuł artykułu

Sodium plays a more important role than potassium and chloride in growth of Salicornia europaea

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Salicornia europaea is a succulent euhalophyte that belongs to the Chenopodiaceae family. It is found that moderate concentration of NaCl can dramatically stimulate the growth of S. europaea plants. To elucidate the mechanism underlying the phenomenon, morphological and physiological changes of S. europaea in response to different ions, including cations (Na⁺, K⁺, Li⁺, Cs⁺) and anions (Cl⁻, NO₃⁻, CH₃COO⁻) were investigated, and the effects of Na⁺, Cl⁻ and K⁺ on the growth of S. europaea were also studied. Na⁺ was more effective than K⁺ and Cl⁻ in stimulating shoot succulence, cell expansion, and stomatal opening. Plants treated with Na⁺ (including NaCl, Na⁺, NaNO₃) showed better plant growth, increased photosynthesis and less cell membrane damage than those untreated and treated with 200 mM of Cl⁻ and K⁺ (including KCl and KNO₃). Both SEM-X-Ray microanalysis and flame emission results revealed that well developed S. europaea plants had a higher content of sodium but lower potassium and chlorine. It is concluded that sodium plays a more important role in the growth and development of S. europaea than potassium and chloride.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
34
Numer
2
Opis fizyczny
p.503-513,fig.,ref.
Twórcy
autor
  • Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing,People' Republic of China
autor
  • Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing,People' Republic of China
autor
  • Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing,People' Republic of China
autor
  • Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing,People' Republic of China
autor
  • Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing,People' Republic of China
autor
  • Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing,People' Republic of China
autor
  • Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing,People' Republic of China
Bibliografia
  • Agarie S, Shimoda T, Shimizu Y, Baumann K, Sunagawa H, Kondo A, Ueno O, Nakahara T, Nose A, Cushman JC (2007) Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum. J Exp Bot 58:1957–1967
  • Apse MP, Blumwald E (2002) Engineering salt tolerance in plants. Curr Opin Biotechnol 13:146–150
  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by over expression of a vacuolar Na⁺/H⁺ antiport in Arabidopsis. Science 285:1256–1258
  • Askari H, Edqvist J, Hajheidari M, Kafi M, Salekdeh GH (2006) Effects of salinity levels on proteome of Suaeda aegyptiaca leaves. Proteomics 6:2542–2554
  • Balnokin YV, Myasoedov NA, Shamsutdinov ZS, Shamsutdinov NZ (2005) Significance of Na⁺ and K⁺ for sustained hydration of organ tissues in ecologically distinct halophytes of the family Chenopodiaceae. Russ J Plant Physl 52:882–890
  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434
  • Dastidar KG, Maitra S, Goswami L, Roy D, Das KP, Majumder AL (2006) An insight into the molecular basis of salt tolerance of L-myo-inositol 1-P synthase (PcINO1) from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice. Plant Physiol 140:1279–1296
  • Davy AJ, Bishop GF, CostaCB (2001) Salicornia L. (Salicornia pusilla J. Woods, S. ramosissima J. Woods, S. europaea L., S. obscura P.W. Ball, Tutin, S. nitens P.W. Ball, Tutin, S. fragilis P.W. Ball, Tutin and S. dolichostachya Moss). J Ecol 89:681–707
  • Everard JD, Gucci R, Kann SC, Flore JA, Loeschner WH (1994) Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L.) at various levels of root zone salinity. Plant Physiol 106:281–292
  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963
  • Flowers TJ, Dalmond D (1992) Protein-synthesis in halophytes–the influence of potassium, sodium and magnesium in vitro. Plant Soil 146:153–161
  • Gibon Y, Bessieres MA, Larher F (1997) Is glycine betaine a noncompatible solute in higher plants that do not accumulate it? Plant Cell Environ 20:329–340
  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Ann Rev Plant Physiol 31:149–190
  • Gupta SA, Berkowitz GA (1987) Osmotic adjustement, symplast volume, and nonstomatally mediated water stress inhibition of photosynthesis in wheat. Plant Physiol 89:1040–1047
  • Kingsbury RW, Epstein E (1986) Salt sensitivity in wheat, a case for specific ion toxicity. Plant Physiol 80:651–654
  • Kronzucker HJ, Szczerba MW, Goudarzi MM, Britto DT (2006) The cytosolic Na⁺:K⁺ ratio does not explain salinity-induced growth impairment in barley: a dual-tracer study using ⁴²K and ²⁴Na. Plant Cell Environ 29:2228–2237
  • Maathuis FM, Amtmann A (1999) K⁺ nutrition and Na⁺ toxicity: the basis of cellular K⁺/Na⁺ Ratios. Ann Bot 84:123–133
  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69–76
  • Moghaieb RA, Saneoka H, Fujita K (2004) Effect of salinity on osmotic adjustment, glycinebetaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritime. Plant Sci 166:1345–1349
  • Ottow EA, Brinker M, Teichmann T, Fritz E, Kaiser W, Brosché M, Kangasjärvi J, Jiang X, Polle A (2005) Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates, and develops leaf succulence under salt stress. Plant Physiol 139:1762–1772
  • Peng YH, Zhu YF, Mao YQ, Wang SM, Su WA, Tang ZC (2004) Alkali grass resists salt stress through high K⁺ and an endodermis barrier to Na⁺. J Exp Bot 55:939–949
  • Plaut Z, Federman E (1991) Acclimation of CO₂ assimilation in cotton leaves to water stress and salinity. Plant Physiol 97:515–522
  • Ramos J, Lopez MJ, Benlloch M (2004) Effect of NaCl and KCl salts on the growth and solute accumulation of the halophyte Atriplex nummularia. Plant Soil 259:163–168
  • Riehl TE, Ungar IA (1982) Growth and ion accumulation in Salicornia europaea under saline field conditions. Oecologia 54:193–199
  • Rizhsky L, Hallak-Herr E, Van Breusegem F, Rachmilevitch S, Barr JE, Rodermel S, Inzé D, Mittler R (2002) Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. Plant J 32:329–342
  • Shabala S, Cuin TA (2007) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669
  • Short DC, Colmer TD (1999) Salt Tolerance in the halophyte Halosarcia pergranulata subsp. Pergranulata. Ann Bot 83:207–213
  • Tester M, Davenport R (2003) Na⁺ tolerance and Na⁺ transport in higher plants. Ann Bot 91:503–527
  • Tian WM, Peng SQ, Wang XC, Shi MJ, Chen YY, Hu ZH (2007) Vegetative storage protein in Litchi chinensis, a subtropical evergreen fruit tree, possesses trypsin inhibitor activity. Ann Bot 100:1119–1208
  • Ushakova SA, Kovaleva NP, Gribovskaya IV, Dolgushev VA, Tikhomirova NA (2005) Effect of NaCl concentration on productivity and mineral composition of Salicornia europaea as a potential crop for utilization NaCl in LSS. Adv Space Res 36:1349–1353
  • Wang BS, Luttge U, Ratajczak R (2001) Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. J Exp Bot 52:2355–2365
  • Wang XC, Fan PX, Song HM, Chen XY, Li XF, Li YX (2009) Comparative proteomic analysis of differentially expressed proteins in shoots of Salicornia europaea under different salinity. J Proteome Res 8:3331–3345
  • Xiong LM, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139
  • Yeo AR (1981) Salt tolerance in the halophyte Suaeda maritima (L.) Dum.: intracellular compartmentation of ions. J Exp Bot 32:487–497
  • Yeo AR, Flowers TJ (1980) Salt tolerance in the halophyte Suaeda maritima (L.) Dum.: evaluation of the effect of salinity upon growth. J Exp Bot 31:171–1183
  • Zhang X, Zhang L, Dong FC, Gao JF, Galbraith DW, Song CP (2001) Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol 126:1438–1448
  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71
Uwagi
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-44f0a6e7-4dd6-4afb-87b4-ed05934a2afe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.