Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 80 | 2 |
Tytuł artykułu

The inhibitory effects of bile acids on catalytic and non‑catalytic functions of acetylcholinesterase as a therapeutic target in Alzheimer’s disease

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Acetylcholine is a fast‑acting neurotransmitter in synapses and neuromuscular junctions that is decreased in Alzheimer’s disease (AD) by hyper‑activation of acetylcholinesterase (AChE), which leads to progressive loss of memory and neurobehavioral abnormalities. Therefore, AChE inhibitors have therapeutic potential in AD that could include natural compounds such as bile acids. Bile acids, as potent molecules, could improve some types of neurodegenerative diseases via antioxidant effects and other unknown mechanisms. The aim of this study was to investigate beneficial effects of bile acids on AChE catalytic and non‑catalytic functions, amyloid plaque deposit and memory in a rat model of AD. The effects of sodium deoxycholate and cholic acid on AChE activity were assessed by in vitro assay. Then, the bile acids’ potential therapeutic effects were investigated on nucleus basalis of Meynert lesioned rats using behavioral evaluation, biochemical tests and histological methods. Molecular docking simulation was also implemented to investigate the possible interaction between bile acids and AChE. According to the in vitro and in vivo results, sodium deoxycholate could efficiently inhibit the catalytic function of the enzyme by interacting with the catalytic site, while cholic acid interacted with the peripheral anionic site and inhibited chaperone activity of the enzyme that led to the reduced amyloid plaque deposition. The co‑administration of cholic acid and sodium deoxycholate showed these compounds are able to simultaneously inhibit the catalytic and non‑catalytic functions of the enzyme. This study clarifies the roles of natural bile acids in the nervous system and in AChE function through multiple experimental and simulation methods.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
80
Numer
2
Opis fizyczny
p.108-116,fig.,ref.
Twórcy
autor
  • Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
autor
  • Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
autor
  • Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
Bibliografia
  • Aboutwerat A, Pemberton PW, Smith A, Burrows PC, McMahon RF, Jain SK, Warnes TW (2003) Oxidant stress is a significant feature of primary biliary cirrhosis. Biochim Biophys Acta 1637: 142–150.
  • Ackerman HD, Gerhard GS (2016) Bile acids in neurodegenerative disorders. Front Aging Neurosci 8: 263.
  • Anand P, Singh B (2013) A review on cholinesterase inhibitors for Alzheimer’s disease. Arch Pharm Res 36: 375–399.
  • Batelli S, Albani D, Rametta R, Polito L, Prato F, Pesaresi M, Negro A, Forloni  G (2008) DJ‑1 modulates alpha‑synuclein aggregation state in a cellular model of oxidative stress: relevance for Parkinson’s disease and involvement of HSP70. PLoS One 3: e1884.
  • Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‑dye binding. Anal Biochem 72: 248–254.
  • Dong H, Xiang YY, Farchi N, Ju W, Wu Y, Chen L, Wang Y, Hochner B, Yang B, Soreq H, Lu WY (2004) Excessive expression of acetylcholinesterase impairs glutamatergic synaptogenesis in hippocampal neurons. J Neurosci 24: 8950–8960.
  • Dong S, Duan Y, Hu Y, Zhao Z (2012) Advances in the pathogenesis of Alzheimer’s disease: a reevaluation of amyloid cascade hypothesis. Transl Neurodegener 1: 18.
  • García‑Ayllón MS, Small DH, Avila J, Sáez‑Valero J (2011) Revisiting the role of acetylcholinesterase in alzheimer’s disease: cross‑talk with P‑tau and β‑amyloid. Front Mol Neurosci 4: 22.
  • Gratwicke J, Kahan J, Zrinzo L, Hariz M, Limousin P, Foltynie T, Jahanshahi M (2013) The nucleus basalis of Meynert: a new target for deep brain stimulation in dementia? Neurosci Biobehav Rev 37: 2676–2688.
  • Holmquist M (2000) Alpha/Beta hydrolase fold enzymes: structures, functions and mechanisms. Curr Protein Pept Sci 1: 209–235.
  • Inestrosa NC, Alvarez A, Pérez CA, Moreno RD, Vicente M, Linker C, Casanueva OI, Soto C, Garrido J (1996) Acetylcholinesterase accelerates assembly of amyloid‑beta‑peptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron 16: 881–891. Johnson G, Moore SW (2006) The peripheral anionic site of acetylcholines‑terase: structure, functions and potential role in rational drug design. Curr Pharm 12: 217–225.
  • Lei J, Gao G, Feng J, Jin Y, Wang C, Mao Q, Jiang J (2015) Glial fibrillary acidic protein as a biomarker in severe traumatic brain injury patients: a pro‑ spective cohort study. Crit Care 19: 362.
  • Liu Y, Yan B, Winkler DA, Fu J, Zhang A (2017) Competitive inhibition mechanism of acetylcholinesterase without catalytic active site interaction: study on functionalized C60 nanoparticles via in vitro and in silico assays. ACS Appl Mater Interfaces 9: 18626–18638.
  • Lo AC, Callaerts‑Vegh Z, Nunes AF, Rodrigues CM, D’Hooge R (2013) Tauroursodeoxycholic acid (TUDCA) supplementation prevents cognitive impairment and amyloid deposition in APP/PS1 mice. Neurobiol Dis 50: 21–29.
  • Mertens KL, Kalsbeek A, Soeters MR, Eggink HM (2017) Bile acid signaling pathways from the enterohepatic circulation to the central nervous system. Front Neurosci 11: 617.
  • Moodley K, Minati L, Contarino V, Prioni S, Wood R, Cooper R, D’Incerti L, Tagliavini F, Chan D (2015) Diagnostic differentiation of mild cognitive impairment due to Alzheimer’s disease using a hippocampus‑depen‑ dent test of spatial memory. Hippocampus 25: 939–951.
  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS (2009) AutoDock4 and AutoDockTools4: Automated docking with selective re‑ ceptor flexibility. J Comput Chem 30: 2785–2791.
  • Pan X, Elliott CT, McGuinness B, Passmore P, Kehoe PG, Hölscher C, McClean PL, Graham SF, Green BD (2017) Metabolomic profiling of bile acids in clinical and experimental samples of Alzheimer’s disease. Me‑ tabolites 7: E28.
  • Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates. 15th ed. Academic Press, San Diego. Prasher VP (2004) Review of donepezil, rivastigmine, galantamine and memantine for the treatment of dementia in Alzheimer’s disease in adults with Down syndrome: implications for the intellectual disability population. Int J Geriatr Psychiatry 19: 509–515.
  • Rizvi SMD, Shakil S, Haneef M (2013) A simple click by click protocol to perform docking: AutoDock 4.2 made easy for non‑bioinformaticians. EXCLI J 12: 831–857.
  • Sadeghi L, Rizvanov AA, Salafutdinov II, Dabirmanesh B, Sayyah M, Fathollahi Y (2017) Hippocampal asymmetry: differences in the left and right hippocampus proteome in the rat model of temporal lobe epilep‑ sy. J Proteomics 154: 22–29.
  • Sadeghi L, Yousefi Babadi V, Tanwir F (2018) Improving effects of Echium amoenum aqueous extract on rat model of Alzheimer’s disease. J Integr Neurosci 17: 661–669.
  • Seibenhener ML, Wooten MW (2012) Isolation and culture of hippocampal neurons from prenatal mice. J Vis Exp 65: 1–6.
  • Toledano A, Alvarez MI (2004) Lesions and dysfunctions of the nucleus basalis as Alzheimer’s disease models: general and critical overview and analysis of the long‑term changes in several excitotoxic models. Curr Alzheimer Res 1: 189–214.
  • Viana RJ, Ramalho RM, Nunes AF, Steer CJ, Rodrigues CM (2010) Modulation of amyloid‑beta peptide‑induced toxicity through inhibition of JNK nuclear localization and caspase‑2 activation. J Alzheimers Dis 22: 557–568.
  • Wenk GL (1990) Animal models of Alzheimer’s disease: are they valid and useful? Acta Neurobiol Exp 50: 219–223.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-44b8d3c8-5d06-40ab-91e9-03601854f9b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.