Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 61 | 4 |
Tytuł artykułu

Optimization of arabitol production by karyoductant SP-K7 of S. cerevisiae V and P. stipitis CCY 39501 using response surface methodology

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
L-arabitol is used in the food and pharmaceutical industries. It can be secreted by genetically modified Saccharomyces cerevisiae carrying the genes responsible for pentose metabolism in yeast cells. The process of the biotransformation of L-arabinose to arabitol is highly dependent on culture conditions. The aim of this investigation was to use statistical response surface methodology (RSM) for optimization of biotransformation of L-arabinose to arabitol by a karyoductant of S. cerevisiae V30 and Pichia stipitis CCY 39501, named SP-K7. Batch cultures of yeast were performed according to a Plackett-Burman design, and three factors, rotation speed, L-arabinose concentration, and temperature, were chosen for a central composite design (CCD) applied in order to optimize the production of the polyol by the karyoductant. On the basis of results obtained using 20 combinations of batch cultures of karyoductant SP-K7, the optimal levels of the factors were determined as: rotation speed 150 rpm, concentration of L-arabinose 32.5 g/l, and temperature 28°C. In such conditions, the predicted concentration of arabitol after two days of incubation of SP-K7 should be 18.367 g/l. The value of R2 = 0.93195 suggested that this model was well-fitted to the experimental data. A verification of the model in experimental conditions confirmed its usefulness.
Wydawca
-
Rocznik
Tom
61
Numer
4
Opis fizyczny
p.291-297,fig.,ref.
Twórcy
  • Department of Biotechnology, Human Nutrition and Science of Food Commodities, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
autor
  • Department of Biotechnology, Human Nutrition and Science of Food Commodities, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
Bibliografia
  • Bera A.K., M. Sedlak, A. Khan and N.W.Y. Ho. 2010. Establishment of L-arabinose fermentation in glucose/xylose co-fermentation recombinant Saccharomyces cerevisiae 424 (LNH-ST) by genetic engineering. Appl. Microbiol. Biotechnol. 87: 1803–1811.
  • Bettiga M., O. Bengtsson, B. Hahn-Hagerdal and M.F. Gorwa-Grauslund. 2009. Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway. Microbial Cell Factories 8: 40.
  • Fonseca C., I. Spencer-Martins and B. Hahn-Hagerdal. 2007. L-arabinose metabolism in Candida arabinofermentans PYCC 5603T and Pichia guilliermondii PYCC 3012: influence of sugar and oxygen on product formation. Appl. Microbiol. Biotechnol. 75: 303–310.
  • Hahn-Hagerdal B., K. Karhumaa, C. Fonseca, I. Spencer-Martins and M.F. Gorwa-Grauslund. 2007. Towards industrial pentosefermenting yeast strains. Appl. Microbiol. Biotechnol. 74: 937–953.
  • Jeffries T.W. and Y.-S. Jin. 2004. Metabolic engineering for improved fermentation of pentoses by yeasts. Appl. Microbiol. Biotechnol. 63: 495–509.
  • Karhumaa K., B. Wiedemann, B. Hahn-Hagerdal, E. Boles and M.F. Gorwa-Grauslund. 2006. Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains. Microbial Cell Factories 5: 18.
  • Koganti S., T.M. Kuo, C.P. Kurtzman, N. Smith and L.-K. Ju. 2011. Production of arabitol from glycerol: strain screening and study of factors a!ecting production yield. Appl. Microbiol. Biotechnol. 90: 257–267.
  • Kordowska-Wiater M. and Z. Targonski. 2001. Application of Saccharomyces cerevisiae and Pichia stipitis karyoductants to the production of ethanol from xylose. Acta. Microbiol. Pol. 3–4: 291–299.
  • Kordowska-Wiater M., Targonski Z. and A. Jarosz. 2008. Biotransformation of L-arabinose to arabitol by yeasts from genera Pichia and Candida (in Polish). Biotechnologia 1: 177–188.
  • Lucca M.E., J.F.T. Spencer and L.I.C. de Figueroa. 2002. Glycerol and arabitol production by an intergeneric hybrid, PB2, obtained by protoplast fusion between Saccharomyces cerevisiae and Torulaspora delbrueckii. Appl. Microbiol. Biotechnol. 59: 472–476.
  • Mc Millan J.D. and B.L. Boynton. 1994. Arabinose utilization by xylose-fermenting yeasts and fungi, Appl. Biochem. Biotechnol. 45/46: 569–584.
  • Monedero V., G. Perez-Martines and M. Yebra. 2010. Perspectives of engineering lactic acid bacteria for biotechnological polyol production. Appl. Microbiol. Biotechnol. 86: 1003–1015.
  • Montgomery D.C. 2001. Design and analysis of experiments, 5th ed. Willey, New York.
  • Myers R.H. and D.C. Montgomery. 2002. Response Surface Methodology. Willey, New York.
  • Saha B.C. and R.J. Bothast. 1996. Production of L-arabitol from L-arabinose by Candida entomaea and Pichia guilliermondii. Appl. Microbiol. Biotechnol. 45: 299–306.
  • Sampaio F.C., D. de Faveri, H.C. Mantovani, F.M. Lopez Passos, P. Perego and A. Converti. 2006. Use of response surface methodology for optimization of xylitol production by the new yeast strain Debaryomyces hansenii UFV-170. J. Food Engin. 76: 376–386.
  • Sanchez R.G., K. Karhumaa, C. Fonseca, V. Nogue, J.R.M. Almeida, C.U. Larsson, O. Bengtsson, M. Bettiga, B. Hahn-Hagerdal and M. Gorwa-Grauslund. 2010. Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering. Biotechnol. Biofuels. 3: 13.
  • Sarrouh B.F. and S.S. da Silva. 2010. Application of response surface methodology for optimization of xylitol production from lignocellulosic hydrolysate in a fluidized bed reactor. Chem. Eng. Technol. 33: 1481–1487.
  • Sedlak M. and N. Ho. 2001. Expression of E. coli ara BAD operon encoding enzymes for metabolizing L-arabinose in Saccharomyces cerevisiae. Enzyme Microbial. Technol. 28: 16–24.
  • StatSoft, Inc. 2007. STATISTICA version 8.0. www.statsoft.com
  • Vasquez M.P., M.B. de Souza and N. Pereira. 2006. RSM analysis of the effects of the oxygen transfer coefficient and inoculum size on the xylitol production by Candida guilliermondii. Appl. Biochem. Biotechnol. 129–132: 256–264.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-435b280e-ca0d-4922-9e44-168856717b19
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.