Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 6 |
Tytuł artykułu

Effect of mercury transfer from producer to consumer in a marine environment

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biomonitoring a stressed Kuwait Bay environment revealed a differential and collective transfer of mercury (Hg) between the primary producer and primary and secondary consumers, in addition to possible Hg bioconcentrations and bioaccumulation in such marine organisms that attributed harmful effects to humans at the tertiary level of the food chain. Selected live samples were collected from five bay sites and exposed for 96 h and 30 d in aquarium tanks. Samples analyzed by direct mercury analyzer (detection limit of 0.0015 ng‧g⁻¹) revealed Hg concentrations in the sequence of Barbatia helblingii >Acanthopagrus berda>phytoplankton>zooplankton at sites IV>V>III>I>II during the summer and winter seasons, respectively. Bioaccumulation factor (BAF) was >1 in most of their trophic transfer, although Hg-BAF was <1 in a few trophic levels. Seasonal variations, anthropogenic sources, vestiges of Hg from the shut-down chlor-alkali plant, urbanization, slow water current, and nutrient upwelling attributed to the persistent Hg accumulation in the marine ecosystem. Since Hg is a ubiquitous pollutant in the bay, their transfer through the medium, diet, and net accumulation in higher predators is of importance to marine life and is a concern to tertiary consumers, including humans.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
26
Numer
6
Opis fizyczny
p.2487-2494,fig.,ref.
Twórcy
autor
  • Department of Chemistry, Kuwait University, Khaldiya Campus, Kuwait
autor
  • Department of Chemistry, Kuwait University, Khaldiya Campus, Kuwait
Bibliografia
  • 1. MARZIEH H., MARAGHEH M.G., SHAMAMI M.A., BEHGAR M. Evaluate of heavy metal concentration in shrimp (Penaeus semisulcatus) and crab (Portunus pelagicus) with INAA method. Springer Plus 2, 72, 2013.
  • 2. POLAK-JUSZCZAK L. Bioaccumulation of mercury in the trophic chain of flatfish from the Baltic Sea. Chemos. 89 (5), 585, 2012.
  • 3. FREIJE A.M. Heavy metal, trace element and petroleum hydrocarbon pollution in the Arabian Gulf: Review. J. Assoc. Arab Univ. Basic Appl. Sci. 17, 90, 2014.
  • 4. SHEPPARD C., AL-HUSAINI M., AL-JAMALI F., AL-YAMANI F., BALDWIN R. The Gulf: A young sea in decline. Mar. Pollut. Bull. 60, 13, 2010.
  • 5. AL-FARRAJ S., EL-GENDY A.H., ALYAHYA H., EL-HEDENY M. Heavy metals accumulation in the mantle of the common cuttlefish Sepia pharaonis from the Arabian Gulf. Australian J. Basics and Appl. Sci. 5 (6), 897, 2011.
  • 6. HAJEB P., JINAP S., ISMAIL A., FATIMAH A.B, JAMILAH B., RAHIM M.A. Assessment of mercury level in commonly consumed marine fishes in Malaysia. Food Contr. 20 (1), 79, 2009.
  • 7. BURGER J. GOCHFELD M. Selenium and mercury molar ratios in saltwater fish from new jersey: individual and species variability complicate use in human health fish consumption advisories. Environ. Res. 114, 12-23, 2012.
  • 8. ALYAHAYA H., EL-GENDY A.H., AL-FERAJ S., EL-HEDENY M. Evaluation of heavy metals pollution in the Arabian Gulf using the clam Meritrix meritrix Linnaeus, 1758. Wat. Air Soil Pollut. 214, 499, 2011.
  • 9. BU-OLAYAN A.H., THOMAS B.V. Dispersion model and bioaccumulation factor validating trace metals in sea bream inhabiting wastewater drain outfalls. Int. J. Environ. Sc. Tech. 11 (3), 795, 2014.
  • 10. TARIQUE Q., BURGER J., REINFELDER J.R. Metal concentrations in organs of the Clam Amiantis umbonella and their use in monitoring metal contamination of Coastal sediments. Wat. Air Soil Pollut. 223 (5), 2125, 2012.
  • 11. AL-MUGHAIRI S., YESUDHASON P., AL-BUSAIDI M., AL-WAILI A., AL-RAHBI W.A.K., AL-MAZROOEI N., AL-HABSI S.H. Concentration and exposure assessment of mercury in commercial fish and other seafood marketed in Oman. J. Food Sci. 78, T1082–T1090, 2013.
  • 12. YUAN X., YANG G., DING Y., LI X., ZHAN XUEFANG Z., ZHAO Z., DUAN Y. An effective analytical system based on a pulsed direct current microplasma source for ultra-trace mercury determination using gold amalgamation cold vapor atomic emission spectrometry. Spectrochim. Acta Part B: Atom.Spectr. 93 (1), 1, 2014.
  • 13. SOURNIA A. Phytoplankton manual. United Nations Educational, Scientific and Cultural Organization (UNESCO), Paris. 344, 1978.
  • 14. APHA. Standard methods for the examination of water and wastewater, Rice E.W., Baird R.B., Eaton A.D., Clesceri L.S. editors, 22nd Edition, American Public Health Association, 2012.
  • 15. USEPA National Recommended Water Quality Criteria - Aquatic Life Criteria Table. https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table. 11, 2004.
  • 16. TOMAS C.R., HASLE G.R. Identifying marine phytoplankton. 10th Edition, San Diego, Academic Press, 2010. ISBN: 9780126930184 012693018X
  • 17. OLMEDO P., PLA A.., HERNÁNDEZ A.F., BARBIER F., AYOUNI L., GIL F. Determination of toxic elements (mercury, cadmium, lead, tin and arsenic) in fish and shellfish samples. Risk assessment for the consumers. Environ. Internat. 59, 63-72, 2013.
  • 18. COSTANZA J, LYNCH D.G., BOETHLING R.S., ARNOT J.A. Use of the bioaccumulation factor to screen chemicals for bioaccumulation potential. Environ. Toxicol. 31 (10), 2012.
  • 19. MAGDALENA B., KOBOS J. Mercury concentration in phytoplankton in response to warming of an autumn – winter season. Environ. Pollut. 215, 38, 2016.
  • 20. SAFAHIEH A., MAHMOODI M., NIKPOUR Y., GHANEMI K. Polycyclic aromatic hydrocarbons concentration in soft tissue of Ark clam (Barbatia helblingii) along Bushehr coasts (summer). 2nd International Conference on Environmental Engineering and Applications. IPCBEE, IACSIT Press, Singapore. 17, 199, 2011.
  • 21. WARD E.J., KACH D.J. Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves. Mar. Environ. Res. 68 (3), 137–142, 2009.
  • 22. AARON N.A., GYASI-ANTWI1 D., NYAABA R.A. Biomonitoring of non-essential heavy metals concentrations in the tono-irrigation dam using mussel tissues. Amer. J. Environ. Protect. 2 (6), 121, 2013.
  • 23. AGUILAR C.A., MONTALVO C., RODRI´GUEZ L., CERO´N J.G., CERO´N R.M. American oyster (Crassostrea virginica) and sediments as a coastal zone pollution monitor by heavy metals. Internat. J. Environ. Sci. Technol. 9, 579, 2012.
  • 24. AFSHAN S., ALI S., AMEEN U.S., FARID M., BHARWANA S.A., HANNAN F., AHMAD R. Effect of different heavy metal pollution on fish. Res. J. Chem. Environ. Sci. 2 (1), 74, 2014.
  • 25. MOORE A.B.M., BOLAM T., LYONS B.P., ELLIS J.R. Concentrations of trace elements in a rare and threatened coastal shark from the Arabian Gulf (smooth-tooth blacktip Carcharhinus leiodon). Mar. Pollut. Bull. 100 (2), 646, 2015.
  • 26. BERVOETS L., KNAPEN D., DE JONGE M., VAN CAMPENHOUT K., BLUST R. Differential hepatic metal and metallothionein levels in three feral fish species along a metal pollution gradient. PLoS One 8 (3), e60805, 2013.
  • 27. EL-MOSELHY KH.M., OTHMAN A.I., EL-AZEM H.A, EL-METWALLY M.E.A. Bioaccumulation of heavy metals in some tissues of fish in the Red Sea, Egypt. Egypt J. Basic Appl. Sci. 1 (2), 97, 2014.
  • 28. MATHEWS T., FISHER N.S. Evaluating the trophic transfer of cadmium, polonium, and methylmercury in an estuarine food chain. Environ. Toxicol. Chem. 27, 1093, 2008.
  • 29. OUÉDRAOGO O., CHÉTELAT J., AMYOT M. Bioaccumulation and trophic transfer of mercury and selenium in African sub-tropical fluvial reservoirs food webs (Burkina Faso). PLoS ONE 10 (4), e0123048, 2015.
  • 30. CARDOSO P.G., PEREIRA E., DUARTE A.C., AZEITEIRO U.M. Temporal characterization of mercury accumulation at different trophic levels and implications for metal biomagnification along a coastal food web. Mar. Pollut. Bull. 87 (1-2), 15, 39, 2014.
  • 31. BRAVO A.G., COSIO C., AMOUROUX D., ZOPFI J., CHEVALLEY P.A., SPANGENBERG J.E., UNGUREANU V.G., DOMINIK J. Extremely elevated methyl mercury levels in water, sediment and organisms in a Romanian reservoir affected by release of mercury from a chlor-alkali plant. Wat. Res. 49, 391, 2014.
  • 32. ZHIJIA C., ZHANG X., WANG Z. Elemental mercury in coastal seawater of Yellow Sea, China: Temporal variation and air-sea exchange. Atm. Environ. 45 (1), 183, 2011.
  • 33. GOSNELL K.J., MASON R.P. Mercury and methylmercury incidence and bioaccumulation in plankton from the central Pacific Ocean. Mar. Chem. 177 (5), 772, 2015.
  • 34. FOX A.L., HUGHES E.A., TROCINE R.P., TREFRY J.H., SCHONBERG S.V., MCTIGUE N.D., LASORSA B.K., KONAR B., COOPER L.W. Mercury in the northeastern Chukchi Sea: Distribution patterns in seawater and sediments and biomagnification in the benthic food web. Deep Sea Res. Part II: Topical Studies Oceanogr. 102, 56-67, 2014.
  • 35. EPA National recommended water quality criteria for priority toxic pollutants. EPA office of science and technology, updated 22 December, 2016, https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic life-criteria-table. 22, 2004.
  • 36. PENGLASE S., HAMRE K., ELLINGSEN S. Selenium and mercury have a synergistic negative effect on fish reproduction. Aquat Toxicol. 149, 16, 2014.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-41fcdf9f-bb72-4229-be0f-d6ac68b34a05
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.