Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 21 | 6 |
Tytuł artykułu

Impact of microbiological inoculum on numbers and activity of microorganisms in peat substrate and on growth and flowering of scarlet sage

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of our study was to determine the dynamics of development of select groups of microorganisms and the activity of dehydrogenases in a substrate containing a microbiological inoculum (BAF1) intended to improve scarlet sage growth and flowering. The material used in the investigations was peat substrate of 5.5-6.0 pH into which plants were planted and then inoculated with different doses of the BAF1 biopreparation (1:10, 1:50, 1:100). Samples of the substrate were collected during the following three phases: seedling planting, vegetative growth, and flowering. The following parameters were determined: developmental dynamics of total bacteria number, actinomycetes, molds (Koch plate method), and dehydrogenases activity (spectrophotometric method). Moreover, plant morphological parameters such as plant height, shoot number and length, number of buds and inflorescences, as well as content of chlorophyll a+b, a, and b, and leaf greenness index (SPAD) were also measured. The application of the BAF1 inoculant into the peat substrate contributed to increased number of heterotrophic bacteria, actinomycetes, molds, and dehydrogenases activity. The number of the studied microorganisms were stimulated most significantly by the applied foliar application of the biopreparation at 1:10 concentration, while their metabolic activity also was stimulated by the foliar application of the experimental inoculum applied at a concentration of 1:50. The applied BAF inoculum failed to exert a significant effect on the number and greenness index of leaves or on leaf blade width and length. However, irrespective of the dose and method of application of the inoculum, it improved the degree of coloring of inflorescence buds and affected the length of inflorescences (in particular, the foliar and soil application of 1:50 concentration) and increased the chlorophyll content in plants (especially the soil application with the biopreparation at 1:50 concentration, as well as foliar application at 1:100 concentration).
Słowa kluczowe
Wydawca
-
Rocznik
Tom
21
Numer
6
Opis fizyczny
p.1881-1891,fig.,ref.
Twórcy
  • Department of General and Environmental Microbiology, Poznan University of Life Sciences, Szydlowska 50, 60-656 Poznan, Poland
  • Department of Ornamental Plants, Poznań University of Life Sciences, Dabrowskiego 159, 60-594 Poznan, Poland
autor
  • Department of Environmental Protection, Poznan University of Life Sciences, Piatkowska 94 C, 60-649 Poznan, Poland
  • Department of General and Environmental Microbiology, Poznan University of Life Sciences, Szydlowska 50, 60-656 Poznan, Poland
Bibliografia
  • 1. APLADA-SARLIS P., MILIADIS G.E. Monitoring of agricultural products in Greece for residues of pesticides. Fresen. Environ. Bull. 10, (5), 423, 2001.
  • 2. WOLNA-MARUWKA A., SCHROETER – ZAKRZEWSKA A., BOROWIAK K. Effect of EM inoculum on the microbiological state of substrate designed for pelargonium (Pelargonium × hortorum) Science Nature and Technology. 4, 6 #98, 2010.
  • 3. PIDRE J., TOJA R J., ALONSO E. Biological phosphorus removal from waste water: influence of sludge retention time and carbon concentration. Fresen. Environ. Bull. 10, (12), 245, 2001.
  • 4. BLUM U. Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interaction. J. Chem. Ecol. 24, 685, 1998.
  • 5. MARSCHNER P. Plant-microbe interactions in the rhizosphere and nutrient cycling. In: Marsner P., Rengel Z. (Eds.) Nutrient Cycling in Terrestrial Ecosystems, Soil Biology 10. Springer-Verlag Berlin Heidelberg. pp. 159, 2007.
  • 6. BOELENS J., VANDE WOESTYNE M., VERSTRAETE W. Ecological importance of motility for plant growth – promoting rhizopseudomonas strain ANP15. Soil. Biol. Biochem. 26, 269, 1994.
  • 7. TRAPPE J.M. Mycorrhiazae and productivity of arid and semiarid rangelands. In: Manassah J.T., Briskey E.J. (Eds.) Advances in food producing systems for arid and semiarid lands. Academic Press, New York. pp. 581, 1981.
  • 8. MARTIN F., BOTTON B. Nitrogen metabolism of ectomycorrhizal fungi and ectomycorrhiza. Advanced Plant Phatology. 9, 83, 1993.
  • 9. SMITH S.E., READ D. Mycorrhizal symbiosis. Third edition. Academic Press, London, pp. 800, 2008.
  • 10. FAN Y., LUAN Y., AN L., YU K. Arbuscular mycorrhizae formed by Penicillium pinophilum improve the growth, nutrient uptake and photosynthesis of strawberry with two inoculum-types. Biotechnological Letters. 30, 1489, 2008.
  • 11. KASCHUK G., KUYPER T.W., LEFFELAAR P.A., HUNGRIA M., GILLER K.E. Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil. Biol. Biochem. 41, 1233, 2009.
  • 12. BILDUSAS I.J., DIXON R.K., PFLEGER F.L., STEWART L. Growth, nutrition and gas exchange of Bromus inermis inoculated with Glomus fasciculatum. New Pyhtologist. 102, 303, 1986.
  • 13. ZHOU H.-J., LIANG Y., CHEN H., SHEN S.-H., JING Y.- X. Effects of rhizobia inoculation and nitrogen fertilization on photosynthetic physiology of soybean. Photosynthetica. 44, (4), 530, 2006.
  • 14. BAREA J.M., AZCΌN R., AZCΌN-AGUILAR C. Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie van Leeuwenhoek. 81, 343, 2002.
  • 15. VESTBERG M., KUKKONEN S., SAARI K., PARIKKA P., HUTTUNEN J., TAINIO L., DEVOS N., WEEKERS F., KEVERS C., THONART P., LEMOINE M.C., CORDIER C., ALABOUVETTE C., GIANINAZZI S. Microbial inoculation for improving the growth and health of micropropagated strawberry. Appl. Soil. Ecol. 27, 243, 2004.
  • 16. PHAE C. G., SASAKI M., SHODA M., KUBOTA H. Characteristic of Bacillus subtilis isolated from composts suppressing phytopthogenic microorganisms. Soil. Sci Plant. Nutr. 36, (4), 575, 1990.
  • 17. AYTEKIN A., ACIKGOZ A.O. Hormone and microorganism treatments In the cultivation of saffron (Crocus sativus L.) plants. Molecules, 13, 1135, 2008.
  • 18. GÓRSKI R., KLEIBER T. Effect of Effective Microoorganisms (EM) on nutrient contents in substrate and development and yelding of rose (Rosa x hybrida) and gerbera (Gerbera jamesonii). Ecological Chemistry and Engineering. 17, (4), 505, 2010.
  • 19. Merck-Polska.101621 Standard count agar for microbiology, 1, 2004.
  • 20. MARTIN J. P. Use of acid, rose bengal and streptomycin in the plate method for estimating soil fungi. Soil Sci. 69, 215, 1950.
  • 21. KAŃSKA Z., GRABIŃSKA-ŁONIEWSKA A., ŁEBKOWSKA M., ŻECHOWSKA E. Laboratory exercises in sanitary biology. Warsaw Polytechnic, Warsaw, 193, 2001.
  • 22. THALMANN A. Methodology for the determination of the activity dehydrogenase in soil from triphenyltetrazolium chloride (TTC). Landwirtsch. Forsch. 21, 249, 1968.
  • 23. SHOAF W.T., LIUM RW. Improved extraction of chlorophyll a and b from algae using dimethyl sulfoxide. Limnol. Oceanogr. 21, 926, 1976.
  • 24. HISCOX J.D., ISRAELSTAM G.F. A method for the extraction of chlorophyll from leaf tissue without maceration. Can. J. Bot. 57, 1332, 1979.
  • 25. OTT L. An introduction to statistical methods and data analysis. PWS Publishers, Boston, pp. 750, 1984.
  • 26. RÓŻYCKI H., STRZELCZYK E. Organic bonds secreted by soil microorganisms and plant roots. Adv. Appl. Microbiol. 24, (4), 285, 1985.
  • 27. WIELGOSZ E., SZEMBER A. Occurrence of natural complexes of soil microorganisms in near-root zone of plants used designing house garden. Annales UMCS, Sec. E. 61, 75, 2006.
  • 28. KUCHARSKI J., JASTRZĘBSKA E. Role of Effective Microorganisms (EM) and soil microorganisms in the development of soil microbiological properties. Advances of Agricultural Science Problem Issues. 506, 315, 2005.
  • 29. DAHM H., RÓŻYCKI H., STRZELCZYK E. Bacteria and actinomycetes of soils and root zone of forest trees. Advances in Microbiology. XXV, (1/2), 103, 1986.
  • 30. MORDARSKA H., PAŚCIAK M. Actinomycetes in nature and biotechnology. Biotechnology. 4, 142, 2002.
  • 31. OSKAY M., TAMER A., AZERI C. Antibacterial activity of some actinomycetes isolated from farming soils of Turkey. African Journal of Biotechnology. 3, 441, 2004.
  • 32. WIELGOSZ E. Microbial and enzymatic activity in brown soil under the cultivation of Sida hermaphrodita and Helianthus tubersus. Annales UMCS. 35, (36), 173, 1999.
  • 33. BIS H. Occurrence of toxicogenic fungi in soil environment. Activity of microorganisms in different environments. Kraków, pp. 35, 2002.
  • 34. NENWANI V., DOSHI P., SAHA T., RAJKUMAR S. Isolation and characterization of a fungal isolate for phosphate solubilization and plant growth. Journal of Yeast and Fungal Research. 1, (1), 009, 2010.
  • 35. RENWICK A, CAMPBELL R, COE S. Assessment of in vivo screening systems for potential biocontrol agents of Gaeumannomyces graminis. Plant Pathol. 40, 524, 1991.
  • 36. GARCIA C., RODAN A., HERNANDEZ T. Changes in microbial activity after abandonment of cultivation in semiarid Mediterraneam environment. J. Environ. Qual. 26, 285, 1997.
  • 37. WIELGOSZ E., SZEMBER A., PRYCIAK I. Influence of selected plants on occurrence of complexes of soil microorganisms. Annales UMCS. Sec. E. 59, (4), 1679, 2004.
  • 38. WOLNA-MARUWKA A., KLAMA J., NIEWIADOMSKA A. Effect of fertilization using communal sewage sludge on respiration activity and counts of selected microorganisms in the grey brown podzolic soil. Pol. J. Environ. Stud. 16, (7), 899, 2007.
  • 39. WOLNA-MARUWKA A., SAWICKA A., KAYZER D. Size selected groups of microorganisms and soil respiration activity fertilized by municipal sewage sludge. Pol. J. Environ. Stud. 16, (1), 129, 2007.
  • 40. BRZEZIŃSKA M., WŁODARCZYK T. Enzymes of intracellular redox (oxidoreductase) changes. Acta Agrophysica. 3, 11, 2005.
  • 41. WOLNA-MARUWKA A., NIEWIADOMSKA A., KLAMA J. Biological activity of grey-brown podzolic soil organically fertilized for mazie cultivation in monoculture. Pol. J. Environ. Stud. 18, (5), 931, 2009.
  • 42. KUCHARSKI J. Relations between enzyme activity and soil fertility. In: Microorganisms in environment. Occurrence, activity and significance. Ed. Financed by KBN and Faculty of Agronomy of AR Wrocław, pp. 327, 1997.
  • 43. FUCHS J.G. Interactions between beneficial and harmful microorganisms: from the composting process to compost application. Springer-Verlag Berlin Heidelberg, 213, 2010.
  • 44. SUNDBERG C., SMÅRS S., JÖNSSON H. Low pH as an inhibiting factor in the transition from mesophilic to thermophilic phase in composting. Bioresource Technol. 95, (2), 140, 2004.
  • 45. WYSOCKI F., LIRA J. Descriptive statistics. Agricultural University Publisher in Poznań, Poznań, pp. 203, 2003.
  • 46. LYNCH J.M., PANTING L.M. Cultivation and the soil biomass. Soil Biol. Biochem., 12, 29, 1980.
  • 47. CHOWDHURY A.R., HOSSAIN M.M, MIA M.S., KARIM A.J.S., HAIDER J., BHUIYAN N.I., SAIFUDDIN K. Effect of organic amendments and EM on crop production in Bangladesh. Proceedings of the Second International Conference on Kyusei Nature Farming. October 7-11, Sao Paulo, Brazil, 8, 1991
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-40137186-09d3-4355-bb67-a1b87ba5c1c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.