Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 04 |
Tytuł artykułu

Can pit conductance be blocked under low ionic strength? Effect of deionized water on intervessel connectivity in a halophytic desert shrub (Tamarix gallica L.)

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The fact that the porosity and permeability of intervessel pit pathways are significantly reduced by low ionic strength (deionized water) evokes the question of to what degree the pit membrane permeability can be reduced, and whether the network of laterally connected vessels can be affected by low ionic strength. Isolated stem segments of Tamarix gallica were used to (1) evaluate the effect of low ionic strength on lateral pit pathways in xylem of the halophytic plant; (2) visualize the blocked pathways by tracing the vessel network before and after treatments, using two apoplastic tracers. The results showed that the degree of intervessel contacts was significantly decreased by deionized water. Blockage of some laterally connected vessels could be clearly visualized in samples perfused with deionized water. These results suggested that some intervessel pit pathways might be blocked under low ionic strength, causing a reduction in the intervessel connectivity. Also, our results supported the idea that pit membranes might differ in their structure and/or chemical nature within the same xylem network. This study may contribute to an understanding of the complex interactions among sap salinity, pit pathways, and intervessel connectivity.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
36
Numer
04
Opis fizyczny
p.1045-1050,fig.,ref.
Twórcy
autor
  • Division of Bioresources, Scientific and Technical Research Centre for Arid Areas (CRSTRA), Biophysical Station, 3240 Nezla, Touggourt, Algeria
  • Division of Bioresources, Scientific and Technical Research Centre for Arid Areas (CRSTRA), Biophysical Station, 3240 Nezla, Touggourt, Algeria
  • Laboratory of Ecosystem Diversity and Dynamics of Agricultural Production Systems in Arid Zones, University of Mohammed Khaider, Biskra, Algieria
autor
  • Division of Bioresources, Scientific and Technical Research Centre for Arid Areas (CRSTRA), Biophysical Station, 3240 Nezla, Touggourt, Algeria
autor
  • Division of Bioresources, Scientific and Technical Research Centre for Arid Areas (CRSTRA), Biophysical Station, 3240 Nezla, Touggourt, Algeria
autor
  • Division of Bioresources, Scientific and Technical Research Centre for Arid Areas (CRSTRA), Biophysical Station, 3240 Nezla, Touggourt, Algeria
Bibliografia
  • Aasamaa K, Sõber A (2010) Sensitivity of stem and petiole hydraulic conductance of deciduous trees to xylem sap ion concentration. Biol Plant 54:299–307
  • Boyce CK, Zwieniecki MA, Cody GD, Jacobsen C, Wirick S, Knoll AH, Holbrook NM (2004) Evolution of xylem lignification and hydrogel transport regulation. Proc Natl Acad Sci Plant Biol 101:17555–17558
  • Burggraaf PD (1972) Some observations on the course of the vessels in the wood of Fraxinus excelsior L. Acta Bot Neer 21:32–47
  • Choat B, Brodie TW, Cobb AR, Zwieniecki MA, Holbrook NM (2006) Direct measurements of intervessel pit membrane hydraulic resistance in two angiosperm tree species. Am J Bot 93:993–1000
  • Crombie DS, Hipkins MF, Milburn JA (1985) Gas penetration of pit membranes in the xylem of Rhododendron as the cause of acoustically detected sap cavitation. Aust J Plant Physiol 12:445–453
  • Fujii T, Lee SJ, Kuroda N, Suzuki Y (2001) Conductive function of intervessel pits through a growth ring boundary of Machilus thunbergii. IAWA J 22:1–14
  • Gascó A, Salleo S, Gortan E, Nardini A (2007) Seasonal changes in the ion-mediated increase of xylem hydraulic conductivity in stems of three evergreens: any functional role? Physiol Plant 129:597–606
  • Gortan E, Nardini A, Salleo S, Jansen S (2011) Pit membrane chemistry influences the magnitude of ion-mediated enhancement of xylem hydraulic conductance in four Lauraceae species. Tree Physiol 31:48–58
  • Halis Y, Mayouf R, Benhaddya ML, Belhamra M (2013) Intervessel connectivity and relationship with patterns of lateral water exchange within and between xylem sectors in seven xeric shrubs from the great Sahara desert. J Plant Res 126:223–231
  • Jansen S, Choat B, Vinckier S, Lens F, Schols P, Smets E (2004) Intervascular pit membranes with a torus in the wood of Ulmus (Ulmaceae) and related genera. New Phytol 163:51–59
  • Jansen S, Choat B, Pletsers A (2009) Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms. Am J Bot 96:409–419
  • Jansen S, Gortan E, Lens F, Lo Gullo MA, Salleo S, Scholz A, Stein A, Trifilo‘ P, Nardina A (2011) Do quantitative vessel and pit characters account for ion-mediated changes in the hydraulic conductance of angiosperm xylem? New Phytol 189:218–228
  • Kitin PB, Fujii T, Abe H, Funada R (2004) Anatomy of the vessel network within and between tree rings of Fraxinus lanuginosa (Oleaceae). Am J Bot 91:779–788
  • Kitin P, Fujii T, Abe H, Takata K (2009) Anatomical features that facilitate radial flow across growth rings and from xylem to cambium in Cryptomeria japonica. Ann Bot 103:1145–1157
  • López-Portillo J, Ewers F, Angeles G (2005) Sap salinity effects on xylem conductivity in two mangrove species. Plant Cell Environ 28:1285–1292
  • Nardini A, Gasco A, Trifilò P, Lo Gullo MA, Salleo S (2007) Ion-mediated enhancement of xylem hydraulic conductivity is not always suppressed by the presence of Ca²⁺ in the sap. J Exp Bot 58:2609–2615
  • Nardini A, Salleo S, Jansen S (2011) More than just a vulnerable pipeline: xylem physiology in the light of ion-mediated regulation of plant water transport. J Exp Bot 62:4701–4718
  • Orians CM, Jones CG (2001) Plants as resource mosaics: a functional model for predicting patterns of within-plant resource heterogeneity to consumers based on vascular architecture and local environmental variability. Oikos 94:493–504
  • Sano YZ (2004) Intervascular pitting across the annual ring boundary in Betula platyphylla var. japonica and Fraxinus mandshurica var. japonica. IAWA J 25:129–140
  • Sano Y (2005) Inter- and intraspecific structural variations among intervascular pit membranes as revealed by field-emission scanning electron microscopy. Am J Bot 92:1077–1084
  • Schmitz N, Koch G, Beeckman H, Koedam N, Robert EMR, Schmitt U (2012) Structural and compositional analysis of intervessel pit membranes in the sapwood of some mangrove woods. IAWA J 33:243–256
  • Taneda H, Tateno M (2007) Effects of transverse movement of water in xylem on patterns of water transport within current-year shoots of kudzu vine, Pueraria lobata. Funct Ecol 21:226–234
  • Tester M, Davenport R (2003) Na⁺ tolerance and Na⁺ transport in higher plants. Ann Bot 91:1–25
  • Trifilò P, Lo Gullo MA, Salleo S, Callea K, Nardini A (2008) Xylem embolism alleviated by ion-mediated increase in hydraulic conductivity of functional xylem: insights from field measurements. Tree Physiol 28:1505–1512
  • Tyree MT, Ewers FW (1991) The hydraulic architecture of trees and other woody plants. New Phytol 119:345–360
  • Tyree MT, Sperry JS (1989) Vulnerability of xylem to cavitation and embolism. Ann Rev Plant Physiol Mol Biol 40:19–38
  • Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap, 2nd edn. Springer, Berlin
  • van Doorn WG, Hiemstra T, Fanourakis D (2011) Hydrogel regulation of xylem water flow: an alternative hypothesis. Plant Physiol 157:1642–1649
  • van Ieperen W, Van Gelder A (2006) Ion-mediated flow changes suppressed by minimal calcium presence in xylem sap in Chrysanthemum and Prunus laurocerasus. J Exp Bot 57:2743–2750
  • van Ieperen W, van Meeteren U, van Gelder H (2000) Fluid ionic composition influences hydraulic conductance of xylem conduits. J Exp Bot 51:769–776
  • Zanne AE, Westoby M, Falster DS, Ackerly DD, Loarie SR, Arnold SEJ, Coomes DA (2010) Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity. Am J Bot 97:207–215
  • Zwieniecki MA, Melcher PJ, Holbrook NM (2001) Hydrogel control of xylem hydraulic resistance in plants. Science 29:1059–1062
  • Zwieniecki MA, Orians CM, Melcher PJ, Holbrook NM (2003) Ionic control of the lateral exchange of water between vascular bundles in tomato. Ann Bot 54:1399–1405
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-3fb0d641-668c-47fb-b9eb-91b88f4d074c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.